Numerical Functions

Throughout the Wolfram Language there is support not only for approximate real numbers, but also for exact numbers represented in algebraic or symbolic form. Functions like Floor, IntegerPart, and Max are all in effect set up to "prove theorems"often using original algorithms developed at Wolfram Researchto give values with exact inputs.

Round  ▪  Floor  ▪  Ceiling  ▪  IntegerPart  ▪  FractionalPart

MixedFractionParts integer and fractional parts of a mixed fraction

Min, Max minimum, maximum of numbers or lists

RealAbs absolute value of real numbers

RealSign sign of real numbers (, , )

Abs absolute value of complex numbers

Sign sign of complex numbers

Clip clip to between and or other limits

Rescale rescale to run between and

Chop chop small values to

Threshold set values in a list below a threshold to 0.

LogisticSigmoid sigmoid function

Unitize 0 for x0, and 1 otherwise

UnitStep 0 for x<0, and 1 for x0

Ramp for , and for

UnitBox  ▪  UnitTriangle

Piecewise general piecewise function

Boole 1 for True, 0 for False

DiscreteIndicator indicator function for a discrete set

Less(<)  ▪  Greater(>)  ▪  LessEqual(<=)  ▪  GreaterEqual (>=)

NumericalOrder give -1, 0, +1 for less, equal, greater

SquareWave  ▪  TriangleWave  ▪  SawtoothWave

Integer Functions »

IntegerQ test whether an expression is an integer

Mod  ▪  Quotient  ▪  GCD  ▪  ModularInverse  ▪  ...