LogisticSigmoid

LogisticSigmoid[z]

gives the logistic sigmoid function.

Details

Examples

open allclose all

Basic Examples  (5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

The expansion of the function:

Scope  (36)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array using automatic threading:

Or compute the matrix LogisticSigmoid function using MatrixFunction:

Specific Values  (4)

The value of LogisticSigmoid at 2 πI n for integer n is 1/2:

Values at infinity:

Simple exact values are generated automatically:

More complicated cases require explicit use of FunctionExpand:

Find a value of for which the TemplateBox[{x}, LogisticSigmoid]=0.8` using Solve:

Substitute in the result:

Visualize the result:

Visualization  (3)

Plot the LogisticSigmoid[x] function:

Plot the real part of TemplateBox[{z}, LogisticSigmoid]:

Plot the imaginary part of TemplateBox[{z}, LogisticSigmoid]:

Polar plot with TemplateBox[{phi}, LogisticSigmoid]:

Function Properties  (10)

LogisticSigmoid is defined for all real and complex values:

LogisticSigmoid achieves all values between 0 and 1 on the reals:

The range for complex values:

LogisticSigmoid has the mirror property TemplateBox[{{z, }}, LogisticSigmoid]=TemplateBox[{z}, LogisticSigmoid]:

LogisticSigmoid is an analytic function of x:

It has no singularities or discontinuities:

LogisticSigmoid is nondecreasing:

LogisticSigmoid is injective:

LogisticSigmoid is not surjective:

LogisticSigmoid is non-negative:

LogisticSigmoid is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z:

Formula for the ^(th) derivative with respect to z:

Integration  (3)

Compute the indefinite integral using Integrate:

Verify the anti-derivative:

Definite integral:

More integrals:

Series Expansions  (3)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

Find the series expansion at Infinity:

Taylor expansion at a generic point:

Function Representations  (4)

LogisticSigmoid can be represented in terms of Exp:

Series representation:

LogisticSigmoid can be represented in terms of MeijerG:

LogisticSigmoid obeys the logistic differential equation :

Applications  (1)

Write a specific solution to the dimensionless logistic equation using LogisticSigmoid:

Wolfram Research (2014), LogisticSigmoid, Wolfram Language function, https://reference.wolfram.com/language/ref/LogisticSigmoid.html.

Text

Wolfram Research (2014), LogisticSigmoid, Wolfram Language function, https://reference.wolfram.com/language/ref/LogisticSigmoid.html.

CMS

Wolfram Language. 2014. "LogisticSigmoid." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LogisticSigmoid.html.

APA

Wolfram Language. (2014). LogisticSigmoid. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LogisticSigmoid.html

BibTeX

@misc{reference.wolfram_2025_logisticsigmoid, author="Wolfram Research", title="{LogisticSigmoid}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/LogisticSigmoid.html}", note=[Accessed: 27-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_logisticsigmoid, organization={Wolfram Research}, title={LogisticSigmoid}, year={2014}, url={https://reference.wolfram.com/language/ref/LogisticSigmoid.html}, note=[Accessed: 27-January-2025 ]}