AlternatingFactorial
✖
AlternatingFactorial
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The function
satisfies the recurrence relation
with
.
- AlternatingFactorial can be evaluated to arbitrary numerical precision.
- AlternatingFactorial automatically threads over lists. »
- AlternatingFactorial can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases
Compute the first few alternating factorials:

https://wolfram.com/xid/0mlcfc7ep4si-cfi83b

Plot the values on a log scale over a subset of the reals:

https://wolfram.com/xid/0mlcfc7ep4si-4uocp

Plot over a subset of the complexes:

https://wolfram.com/xid/0mlcfc7ep4si-b7f34n

Expand the alternating factorial in terms of other functions:

https://wolfram.com/xid/0mlcfc7ep4si-v46voh


https://wolfram.com/xid/0mlcfc7ep4si-jqvg93

Give the closed form of the following alternating sum:

https://wolfram.com/xid/0mlcfc7ep4si-hmlp64

The alternating factorial numbers give the solution to the following recurrence:

https://wolfram.com/xid/0mlcfc7ep4si-p7ljho

https://wolfram.com/xid/0mlcfc7ep4si-384vzm


https://wolfram.com/xid/0mlcfc7ep4si-jlrdhp

Scope (18)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0mlcfc7ep4si-itrtf


https://wolfram.com/xid/0mlcfc7ep4si-cksbl4


https://wolfram.com/xid/0mlcfc7ep4si-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0mlcfc7ep4si-xth5g

AlternatingFactorial can take complex number inputs:

https://wolfram.com/xid/0mlcfc7ep4si-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0mlcfc7ep4si-di5gcr


https://wolfram.com/xid/0mlcfc7ep4si-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0mlcfc7ep4si-thgd2

Or compute the matrix AlternatingFactorial function using MatrixFunction:

https://wolfram.com/xid/0mlcfc7ep4si-o5jpo

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0mlcfc7ep4si-dj6d9x


https://wolfram.com/xid/0mlcfc7ep4si-f892wm

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0mlcfc7ep4si-cw18bq

Specific Values (3)
Values of AlternatingFactorial at fixed points:

https://wolfram.com/xid/0mlcfc7ep4si-nww7l


https://wolfram.com/xid/0mlcfc7ep4si-e41pf2


https://wolfram.com/xid/0mlcfc7ep4si-eswwm

Visualization (2)
Plot the absolute value of AlternatingFactorial:

https://wolfram.com/xid/0mlcfc7ep4si-ecj8m7


https://wolfram.com/xid/0mlcfc7ep4si-kgd8nu


https://wolfram.com/xid/0mlcfc7ep4si-f3fwli

Function Properties (7)
Real domain of AlternatingFactorial:

https://wolfram.com/xid/0mlcfc7ep4si-cl7ele


https://wolfram.com/xid/0mlcfc7ep4si-de3irc

TraditionalForm formatting:

https://wolfram.com/xid/0mlcfc7ep4si-efpvd0

AlternatingFactorial is not an analytic function:

https://wolfram.com/xid/0mlcfc7ep4si-gva6yl

AlternatingFactorial has both singularity and discontinuity for z≤-2:

https://wolfram.com/xid/0mlcfc7ep4si-fyfbxx


https://wolfram.com/xid/0mlcfc7ep4si-5vh4e

AlternatingFactorial is neither nondecreasing nor nonincreasing:

https://wolfram.com/xid/0mlcfc7ep4si-2ra8g

AlternatingFactorial is not injective:

https://wolfram.com/xid/0mlcfc7ep4si-c9npzh


https://wolfram.com/xid/0mlcfc7ep4si-b5buvp

AlternatingFactorial is neither non-negative nor non-positive:

https://wolfram.com/xid/0mlcfc7ep4si-dvzykj

It is non-negative on the non-negative reals:

https://wolfram.com/xid/0mlcfc7ep4si-estge4

AlternatingFactorial is neither convex nor concave:

https://wolfram.com/xid/0mlcfc7ep4si-l0srvu

Applications (1)Sample problems that can be solved with this function
AlternatingFactorial can be defined on the positive integers as follows:

https://wolfram.com/xid/0mlcfc7ep4si-i19x6t

Verify the formula for a specific number:

https://wolfram.com/xid/0mlcfc7ep4si-d1q8s3


https://wolfram.com/xid/0mlcfc7ep4si-ot04rg

Wolfram Research (2014), AlternatingFactorial, Wolfram Language function, https://reference.wolfram.com/language/ref/AlternatingFactorial.html.
Text
Wolfram Research (2014), AlternatingFactorial, Wolfram Language function, https://reference.wolfram.com/language/ref/AlternatingFactorial.html.
Wolfram Research (2014), AlternatingFactorial, Wolfram Language function, https://reference.wolfram.com/language/ref/AlternatingFactorial.html.
CMS
Wolfram Language. 2014. "AlternatingFactorial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlternatingFactorial.html.
Wolfram Language. 2014. "AlternatingFactorial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlternatingFactorial.html.
APA
Wolfram Language. (2014). AlternatingFactorial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlternatingFactorial.html
Wolfram Language. (2014). AlternatingFactorial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlternatingFactorial.html
BibTeX
@misc{reference.wolfram_2025_alternatingfactorial, author="Wolfram Research", title="{AlternatingFactorial}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/AlternatingFactorial.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_alternatingfactorial, organization={Wolfram Research}, title={AlternatingFactorial}, year={2014}, url={https://reference.wolfram.com/language/ref/AlternatingFactorial.html}, note=[Accessed: 29-March-2025
]}