BinomialPointProcess
✖
BinomialPointProcess
詳細

- BinomialPointProcess[n,reg]は reg に一様に分布した総数 n 個の点を生成する.
- 一般的な用途は,領域内の既知のワイヤレストランシーバの数や水槽内の魚の数のように点の総数が指定されている場合である.
- BinomialPointProcessとPoissonPointProcessは,どちらも領域上の点の一様分布を返す.前者は点の数が決定論的で,後者は点の数がランダムである.
- 有界の部分領域
内の点の数はBinomialDistribution[n,p]に従い,p=RegionMeasure[sreg]/RegionMeasure[reg]である.
- 二項点過程についての reg の互いに素な部分領域内の点の数は独立ではない.
を満足する互いに素な部分領域
について,体積
の部分領域
内の点の数の接合分布はMultinomialDistribution[n,{ν1/ν,…,νn/ν}]に従う.ただし,
は reg の体積である.
- BinomialPointProcess[n,reg]は事象
を条件とするPoissonPointProcess[μ]である.ただし,
はPointCountDistribution[PoissonPointProcess[μ],reg]に従う確率変数である.
- BinomialPointProcessでは,n は任意の正の整数でよく,reg は任意のパラメータフリーの領域でよい.
- BinomialPointProcessは,RipleyKやRandomPointConfiguration等の関数と一緒に使うことができる.

例題
すべて開くすべて閉じる例 (2)基本的な使用例
BinomialPointProcessからサンプルを取る:

https://wolfram.com/xid/0e5c7rkfrwmlyq-l37xwd


https://wolfram.com/xid/0e5c7rkfrwmlyq-6q6pq


https://wolfram.com/xid/0e5c7rkfrwmlyq-gwc84f


https://wolfram.com/xid/0e5c7rkfrwmlyq-hdfqz


https://wolfram.com/xid/0e5c7rkfrwmlyq-hc6ki4


https://wolfram.com/xid/0e5c7rkfrwmlyq-bi5nn

スコープ (2)標準的な使用例のスコープの概要
RegionEmbeddingDimensionがRegionDimensionと等しい任意の有効なRegionQからサンプルを取る:

https://wolfram.com/xid/0e5c7rkfrwmlyq-qxrhco

https://wolfram.com/xid/0e5c7rkfrwmlyq-dafvpv


https://wolfram.com/xid/0e5c7rkfrwmlyq-ydq337


https://wolfram.com/xid/0e5c7rkfrwmlyq-h8cla8


https://wolfram.com/xid/0e5c7rkfrwmlyq-1usyu9

https://wolfram.com/xid/0e5c7rkfrwmlyq-zb4or3


https://wolfram.com/xid/0e5c7rkfrwmlyq-kv5v29


https://wolfram.com/xid/0e5c7rkfrwmlyq-we3oyo

アプリケーション (1)この関数で解くことのできる問題の例
特性と関係 (4)この関数の特性および他の関数との関係
BinomialPointProcess内の点の数は n によって定義される:

https://wolfram.com/xid/0e5c7rkfrwmlyq-hcejl3

単位円板上でBinomialPointProcessのシミュレーションを行う:

https://wolfram.com/xid/0e5c7rkfrwmlyq-7vkzhn

https://wolfram.com/xid/0e5c7rkfrwmlyq-jjyqjn

有界部分集合上の対応するPointCountDistribution:

https://wolfram.com/xid/0e5c7rkfrwmlyq-5gmn7


https://wolfram.com/xid/0e5c7rkfrwmlyq-d5w2t3


https://wolfram.com/xid/0e5c7rkfrwmlyq-c7nyut

https://wolfram.com/xid/0e5c7rkfrwmlyq-2k7h5r

BinomialDistributionを点の数にフィットする:

https://wolfram.com/xid/0e5c7rkfrwmlyq-gr4k9c


https://wolfram.com/xid/0e5c7rkfrwmlyq-m46usn


https://wolfram.com/xid/0e5c7rkfrwmlyq-bk6ev7

領域被覆上のPointCountDistribution:

https://wolfram.com/xid/0e5c7rkfrwmlyq-uspmrn

https://wolfram.com/xid/0e5c7rkfrwmlyq-zdyvdj

https://wolfram.com/xid/0e5c7rkfrwmlyq-0hh6u9

https://wolfram.com/xid/0e5c7rkfrwmlyq-kop1b4


https://wolfram.com/xid/0e5c7rkfrwmlyq-i49zp


https://wolfram.com/xid/0e5c7rkfrwmlyq-2j6bhn

https://wolfram.com/xid/0e5c7rkfrwmlyq-dcc7zf

https://wolfram.com/xid/0e5c7rkfrwmlyq-60ixxo


https://wolfram.com/xid/0e5c7rkfrwmlyq-xs30cs

https://wolfram.com/xid/0e5c7rkfrwmlyq-fwyxlc


https://wolfram.com/xid/0e5c7rkfrwmlyq-fugl3p

https://wolfram.com/xid/0e5c7rkfrwmlyq-em07kv

https://wolfram.com/xid/0e5c7rkfrwmlyq-p79axg


https://wolfram.com/xid/0e5c7rkfrwmlyq-1nahei


https://wolfram.com/xid/0e5c7rkfrwmlyq-kr3wtf


https://wolfram.com/xid/0e5c7rkfrwmlyq-bdl658

Wolfram Research (2020), BinomialPointProcess, Wolfram言語関数, https://reference.wolfram.com/language/ref/BinomialPointProcess.html.
テキスト
Wolfram Research (2020), BinomialPointProcess, Wolfram言語関数, https://reference.wolfram.com/language/ref/BinomialPointProcess.html.
Wolfram Research (2020), BinomialPointProcess, Wolfram言語関数, https://reference.wolfram.com/language/ref/BinomialPointProcess.html.
CMS
Wolfram Language. 2020. "BinomialPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BinomialPointProcess.html.
Wolfram Language. 2020. "BinomialPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BinomialPointProcess.html.
APA
Wolfram Language. (2020). BinomialPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BinomialPointProcess.html
Wolfram Language. (2020). BinomialPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BinomialPointProcess.html
BibTeX
@misc{reference.wolfram_2025_binomialpointprocess, author="Wolfram Research", title="{BinomialPointProcess}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/BinomialPointProcess.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_binomialpointprocess, organization={Wolfram Research}, title={BinomialPointProcess}, year={2020}, url={https://reference.wolfram.com/language/ref/BinomialPointProcess.html}, note=[Accessed: 06-April-2025
]}