PoissonPointProcess
✖
PoissonPointProcess
represents a homogeneous Poisson point process with constant intensity μ in .
Details

- PoissonPointProcess is also known as homogeneous Poisson point process, stationary Poisson point process and complete spatial randomness (CSR).
- PoissonPointProcess generates points that are uniformly distributed in a region, with the average number of points per unit volume equal to μ.
-
- Typical uses are to model and test point collections that are completely spatially random. They are frequently used as building blocks for more complicated point processes such as clustered point processes.
- With intensity μ, the number of points in the observation region with volume
follows the distribution PoissonDistribution[μ ν].
- The number of points
in disjoint regions
for a Poisson point process consists of independent random variables so
. This property is also referred to as complete spatial randomness (CSR).
- A point configuration
with intensity μ in an observation region
with volume
has density function
with respect to PoissonPointProcess[1,d].
- The Papangelou conditional density
for adding a point
to a point configuration
is
for a Poisson point process with intensity μ.
- PoissonPointProcess allows μ to be any positive real number and d to be any positive integer.
- Possible PointProcessEstimator settings in EstimatedPointProcess for PoissonPointProcess are:
-
Automatic automatically choose the parameter estimator "MaximumPseudoLikelihood" maximize the pseudo-likelihood - PoissonPointProcess can be used with such functions as RipleyK and RandomPointConfiguration.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Sample from a Poisson point process:

https://wolfram.com/xid/0rkimu2nn1r2qwi-4mqsf


https://wolfram.com/xid/0rkimu2nn1r2qwi-d381by

Sample a Poison point process with several realizations:

https://wolfram.com/xid/0rkimu2nn1r2qwi-gwc84f


https://wolfram.com/xid/0rkimu2nn1r2qwi-hdfqz


https://wolfram.com/xid/0rkimu2nn1r2qwi-hc6ki4


https://wolfram.com/xid/0rkimu2nn1r2qwi-bi5nn

Simulate Poisson point process over a country:

https://wolfram.com/xid/0rkimu2nn1r2qwi-ex5gf5

https://wolfram.com/xid/0rkimu2nn1r2qwi-cdzemc


https://wolfram.com/xid/0rkimu2nn1r2qwi-valcig

Scope (4)Survey of the scope of standard use cases
Sample a Poisson point process from any valid region whose RegionEmbeddingDimension is equal to its RegionDimension:

https://wolfram.com/xid/0rkimu2nn1r2qwi-qxrhco

https://wolfram.com/xid/0rkimu2nn1r2qwi-pacet0

Sample points from the region:

https://wolfram.com/xid/0rkimu2nn1r2qwi-ydq337


https://wolfram.com/xid/0rkimu2nn1r2qwi-h8cla8

Sample from PoissonPointProcess using the different methods:

https://wolfram.com/xid/0rkimu2nn1r2qwi-8j1bt

https://wolfram.com/xid/0rkimu2nn1r2qwi-qr7z0c

https://wolfram.com/xid/0rkimu2nn1r2qwi-8i748x

Use Markov chain Monte Carlo method:

https://wolfram.com/xid/0rkimu2nn1r2qwi-r8z4hx


https://wolfram.com/xid/0rkimu2nn1r2qwi-mhakyk

Estimate PoissonPointProcess:

https://wolfram.com/xid/0rkimu2nn1r2qwi-4k0ip


https://wolfram.com/xid/0rkimu2nn1r2qwi-gltjpq


https://wolfram.com/xid/0rkimu2nn1r2qwi-18qtuz

Estimate PoissonPointProcess over a geo region:

https://wolfram.com/xid/0rkimu2nn1r2qwi-d1ac2x


https://wolfram.com/xid/0rkimu2nn1r2qwi-zal2if


https://wolfram.com/xid/0rkimu2nn1r2qwi-fgu7eu

Find PointCountDistribution:

https://wolfram.com/xid/0rkimu2nn1r2qwi-zw29h5

https://wolfram.com/xid/0rkimu2nn1r2qwi-tdcfpk


https://wolfram.com/xid/0rkimu2nn1r2qwi-7er7zr

https://wolfram.com/xid/0rkimu2nn1r2qwi-n9rxt8

Applications (3)Sample problems that can be solved with this function
Suppose flaws in plywood occur on an average of one flaw per 50 square feet. Simulate the process of finding flaws on a per-square-foot basis:

https://wolfram.com/xid/0rkimu2nn1r2qwi-fz5csd


https://wolfram.com/xid/0rkimu2nn1r2qwi-6ye4y3

Find the probability that a 4-foot×8-foot sheet will have no flaws:

https://wolfram.com/xid/0rkimu2nn1r2qwi-rm916e

https://wolfram.com/xid/0rkimu2nn1r2qwi-sknjp

For a round mirror with area 7.54 cm, the probability of no flaws is 0.91. Using the same polishing process, another round mirror with an area of 19.50 cm
is fabricated. Assuming the flaws are independent and randomly located, find the probability of no flaws on the larger mirror:

https://wolfram.com/xid/0rkimu2nn1r2qwi-cewm1r

https://wolfram.com/xid/0rkimu2nn1r2qwi-6w5afw
Find the intensity of the flaw point process:

https://wolfram.com/xid/0rkimu2nn1r2qwi-yj47q0


https://wolfram.com/xid/0rkimu2nn1r2qwi-lf0rpd

The resulting mirror polishing defect process is then:

https://wolfram.com/xid/0rkimu2nn1r2qwi-ynqos8

The probability of no errors in the larger mirror:

https://wolfram.com/xid/0rkimu2nn1r2qwi-wam2ku

https://wolfram.com/xid/0rkimu2nn1r2qwi-zt1f38

An LCD display has 1920×1080 pixels. A display is accepted if it has 15 or fewer faulty pixels. The probability that a pixel is faulty from production is and the faulty pixel positions are independent and random. Find the proportion of displays that are accepted:

https://wolfram.com/xid/0rkimu2nn1r2qwi-s3tyax

https://wolfram.com/xid/0rkimu2nn1r2qwi-x7g8uw
Simulate the faulty pixel configuration:

https://wolfram.com/xid/0rkimu2nn1r2qwi-8caypb


https://wolfram.com/xid/0rkimu2nn1r2qwi-2y2hva

Find the probability of no more than 15 faulty pixels in the display:

https://wolfram.com/xid/0rkimu2nn1r2qwi-b339un

Find the pixel failure rate required to produce 4000×2000 pixel displays and still have an acceptance rate of at least 90%:

https://wolfram.com/xid/0rkimu2nn1r2qwi-gvrjx3

https://wolfram.com/xid/0rkimu2nn1r2qwi-m1rnsy

Plot the acceptance rate as a function of the pixel failure rate:

https://wolfram.com/xid/0rkimu2nn1r2qwi-lkxmue

Find the maximal acceptable pixel failure rate:

https://wolfram.com/xid/0rkimu2nn1r2qwi-n5i27z



https://wolfram.com/xid/0rkimu2nn1r2qwi-fakpmz

Properties & Relations (11)Properties of the function, and connections to other functions
The number of points in a PoissonPointProcess is Poisson distributed:

https://wolfram.com/xid/0rkimu2nn1r2qwi-hetb1


https://wolfram.com/xid/0rkimu2nn1r2qwi-czqwet

Simulate a PoissonPointProcess over a unit disk:

https://wolfram.com/xid/0rkimu2nn1r2qwi-usnk9

https://wolfram.com/xid/0rkimu2nn1r2qwi-jjyqjn


https://wolfram.com/xid/0rkimu2nn1r2qwi-m8ilnh

Compare the histogram of point counts with the PDF:

https://wolfram.com/xid/0rkimu2nn1r2qwi-c7nyut

Fit a PoissonDistribution to the point counts:

https://wolfram.com/xid/0rkimu2nn1r2qwi-gr4k9c


https://wolfram.com/xid/0rkimu2nn1r2qwi-m46usn

Test against the underlying distribution:

https://wolfram.com/xid/0rkimu2nn1r2qwi-bk6ev7

Compute void probabilities for a Poisson point process. For a disk:

https://wolfram.com/xid/0rkimu2nn1r2qwi-60ixxo


https://wolfram.com/xid/0rkimu2nn1r2qwi-fwyxlc


https://wolfram.com/xid/0rkimu2nn1r2qwi-t91rcu

The probability of finding a point within distance of an arbitrary location:

https://wolfram.com/xid/0rkimu2nn1r2qwi-nh7u6b

https://wolfram.com/xid/0rkimu2nn1r2qwi-kdmuk4

This equivalent to the CDF of RayleighDistribution:

https://wolfram.com/xid/0rkimu2nn1r2qwi-xhg94s

Equivalently compute SurvivalFunction at 0 of PointCountDistribution:

https://wolfram.com/xid/0rkimu2nn1r2qwi-02en7s

https://wolfram.com/xid/0rkimu2nn1r2qwi-waz3gk

Poisson point process is stationary—the intensity is translation invariant:

https://wolfram.com/xid/0rkimu2nn1r2qwi-fugl3p
Point count distribution in a subregion:

https://wolfram.com/xid/0rkimu2nn1r2qwi-em07kv

https://wolfram.com/xid/0rkimu2nn1r2qwi-p79axg

Point count distribution in the translated subregion:

https://wolfram.com/xid/0rkimu2nn1r2qwi-1nahei

https://wolfram.com/xid/0rkimu2nn1r2qwi-kr3wtf


https://wolfram.com/xid/0rkimu2nn1r2qwi-df06jd

Poisson point process is isotropic—the intensity is rotation around origin invariant:

https://wolfram.com/xid/0rkimu2nn1r2qwi-prr8pq
Point count distribution in a subregion:

https://wolfram.com/xid/0rkimu2nn1r2qwi-76dbja

https://wolfram.com/xid/0rkimu2nn1r2qwi-ncu7es

Point count distribution in the translated subregion:

https://wolfram.com/xid/0rkimu2nn1r2qwi-l1ywun

https://wolfram.com/xid/0rkimu2nn1r2qwi-qcgl5a


https://wolfram.com/xid/0rkimu2nn1r2qwi-5o7bro

PoissonPointProcess has the property of complete spatial randomness:

https://wolfram.com/xid/0rkimu2nn1r2qwi-drz1qm


https://wolfram.com/xid/0rkimu2nn1r2qwi-zycwk7

Define left and right half-disks:

https://wolfram.com/xid/0rkimu2nn1r2qwi-iwogu8
Create subset of points in each subregion:

https://wolfram.com/xid/0rkimu2nn1r2qwi-jnxpnh


https://wolfram.com/xid/0rkimu2nn1r2qwi-jpop5


https://wolfram.com/xid/0rkimu2nn1r2qwi-ejv1bz

Extract the number of points for each subregion:

https://wolfram.com/xid/0rkimu2nn1r2qwi-z5ve2v
Test whether two samples are independent:

https://wolfram.com/xid/0rkimu2nn1r2qwi-z67hm1


https://wolfram.com/xid/0rkimu2nn1r2qwi-pcac3h

Ripley's function for the Poisson point process has closed form and does not depend on the intensity:

https://wolfram.com/xid/0rkimu2nn1r2qwi-3hltk1

https://wolfram.com/xid/0rkimu2nn1r2qwi-m6387j

Plot the function for few dimensions:

https://wolfram.com/xid/0rkimu2nn1r2qwi-8g4nyq

Besag's for the Poisson point process does not depend on intensity or dimensionality:

https://wolfram.com/xid/0rkimu2nn1r2qwi-zht24f

https://wolfram.com/xid/0rkimu2nn1r2qwi-myijw0

PairCorrelationG for the Poisson point process is constant:

https://wolfram.com/xid/0rkimu2nn1r2qwi-o75yfs

EmptySpaceF and NearestNeighborG functions of a Poisson point process are identical:

https://wolfram.com/xid/0rkimu2nn1r2qwi-ezl23u

https://wolfram.com/xid/0rkimu2nn1r2qwi-peicch


https://wolfram.com/xid/0rkimu2nn1r2qwi-s1mw7o


https://wolfram.com/xid/0rkimu2nn1r2qwi-iuhnsy

They both are equivalent to the CDF of an ExponentialDistribution:

https://wolfram.com/xid/0rkimu2nn1r2qwi-tk0pll

https://wolfram.com/xid/0rkimu2nn1r2qwi-ynkq7r


https://wolfram.com/xid/0rkimu2nn1r2qwi-9i3ozc

InhomogeneousPoissonPointProcess with a constant intensity function is PoissonPointProcess:

https://wolfram.com/xid/0rkimu2nn1r2qwi-br72ig
The point count distribution in a disk:

https://wolfram.com/xid/0rkimu2nn1r2qwi-pahxp9

https://wolfram.com/xid/0rkimu2nn1r2qwi-zexcc4

Point count distribution for a corresponding Poisson point process in the same region:

https://wolfram.com/xid/0rkimu2nn1r2qwi-4vy82f


https://wolfram.com/xid/0rkimu2nn1r2qwi-e9ghmv

https://wolfram.com/xid/0rkimu2nn1r2qwi-irlzgr
The point count distribution in a ball:

https://wolfram.com/xid/0rkimu2nn1r2qwi-6kz6no

Point count distribution for a corresponding Poisson point process in the same region:

https://wolfram.com/xid/0rkimu2nn1r2qwi-bo69a7

Wolfram Research (2020), PoissonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/PoissonPointProcess.html.
Text
Wolfram Research (2020), PoissonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/PoissonPointProcess.html.
Wolfram Research (2020), PoissonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/PoissonPointProcess.html.
CMS
Wolfram Language. 2020. "PoissonPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PoissonPointProcess.html.
Wolfram Language. 2020. "PoissonPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PoissonPointProcess.html.
APA
Wolfram Language. (2020). PoissonPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PoissonPointProcess.html
Wolfram Language. (2020). PoissonPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PoissonPointProcess.html
BibTeX
@misc{reference.wolfram_2025_poissonpointprocess, author="Wolfram Research", title="{PoissonPointProcess}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/PoissonPointProcess.html}", note=[Accessed: 27-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_poissonpointprocess, organization={Wolfram Research}, title={PoissonPointProcess}, year={2020}, url={https://reference.wolfram.com/language/ref/PoissonPointProcess.html}, note=[Accessed: 27-March-2025
]}