RandomPointConfiguration
✖
RandomPointConfiguration
generates a pseudorandom spatial point configuration from the spatial point process pproc in the observation region reg.
Details and Options

- RandomPointConfiguration takes a point process pproc and generates a point configuration as a SpatialPointData object.
-
- RandomPointConfiguration gives a different realization of pseudorandom point configurations whenever you run the Wolfram Language. You can start with a particular seed using SeedRandom.
- The same process can generate an ensemble consisting of different realizations.
-
- The observation region reg needs to be a parameter-free region, as well as SpatialObservationRegionQ.
- The following options can be given:
-
Method Automatic what method to use WorkingPrecision MachinePrecision precision used in internal computations - With the setting WorkingPrecisionp, random numbers of precision p will be generated.
- Special settings for Method are documented under the individual point process reference pages.
- Typical Method settings include:
-
"MCMC" Markov chain Monte Carlo birth and death "Thinning" random thinning "Exact" coupling from the past
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Sample from a Poisson point process:

https://wolfram.com/xid/0j0dlyb2oij39e-nn7onq


https://wolfram.com/xid/0j0dlyb2oij39e-d381by

Sample 5 realizations from a binomial point process:

https://wolfram.com/xid/0j0dlyb2oij39e-cfx34l


https://wolfram.com/xid/0j0dlyb2oij39e-fp19j3


https://wolfram.com/xid/0j0dlyb2oij39e-ilo8fq

Scope (5)Survey of the scope of standard use cases
RandomPointConfiguration returns a SpatialPointData object:

https://wolfram.com/xid/0j0dlyb2oij39e-b9hhl

Obtain a list of locations of the points:

https://wolfram.com/xid/0j0dlyb2oij39e-h9a13

Simulate a Strauss point process in a rectangle:

https://wolfram.com/xid/0j0dlyb2oij39e-11u5ba

Retrieve points that lie within a unit disk centered at {2,3}:

https://wolfram.com/xid/0j0dlyb2oij39e-s9xzvw

Visualize points on the plane:

https://wolfram.com/xid/0j0dlyb2oij39e-z8uyu0

Estimate the parameters for a point process using a simulated point configuration:

https://wolfram.com/xid/0j0dlyb2oij39e-evf2j1

https://wolfram.com/xid/0j0dlyb2oij39e-btg93s

Simulate from a Cauchy point process:

https://wolfram.com/xid/0j0dlyb2oij39e-pc2ht7

https://wolfram.com/xid/0j0dlyb2oij39e-zhyjp7

Estimate Ripley's function from the sampled point configuration and compare it with the theoretical
function:

https://wolfram.com/xid/0j0dlyb2oij39e-183br5

https://wolfram.com/xid/0j0dlyb2oij39e-i25jxi

Simulate an ensemble of 5 realizations over the same region:

https://wolfram.com/xid/0j0dlyb2oij39e-gkfq3s
Number of points in each realization:

https://wolfram.com/xid/0j0dlyb2oij39e-ggja2m

Visualize the distribution of points in different realizations:

https://wolfram.com/xid/0j0dlyb2oij39e-cb443p

Options (3)Common values & functionality for each option
Method (2)
Sample from an InhomogeneousPoissonPointProcess using the different methods:

https://wolfram.com/xid/0j0dlyb2oij39e-8j1bt

https://wolfram.com/xid/0j0dlyb2oij39e-8lje4s

https://wolfram.com/xid/0j0dlyb2oij39e-8i748x

Use the Markov chain Monte Carlo method "MCMC":

https://wolfram.com/xid/0j0dlyb2oij39e-r8z4hx

Visualize samples over the region:

https://wolfram.com/xid/0j0dlyb2oij39e-mhakyk

Sample from a Gibbs point process using the Markov chain Monte Carlo method "MCMC" with the number of iterations equal to 30000:

https://wolfram.com/xid/0j0dlyb2oij39e-usnk9

https://wolfram.com/xid/0j0dlyb2oij39e-jjyqjn


https://wolfram.com/xid/0j0dlyb2oij39e-lavt93

WorkingPrecision (1)
Generate a sample point configuration with default machine precision:

https://wolfram.com/xid/0j0dlyb2oij39e-t52tzx

Use WorkingPrecision to generate a sample point configuration with higher precision:

https://wolfram.com/xid/0j0dlyb2oij39e-c4j61e

Applications (2)Sample problems that can be solved with this function
Estimate the density of a PoissonPointProcess from a sample:

https://wolfram.com/xid/0j0dlyb2oij39e-cnq0d4


https://wolfram.com/xid/0j0dlyb2oij39e-dopmb

Compare the expected point counts and the average of number of points for an inhomogeneous Poisson point process:

https://wolfram.com/xid/0j0dlyb2oij39e-14dn2


https://wolfram.com/xid/0j0dlyb2oij39e-hkyt6c

Wolfram Research (2020), RandomPointConfiguration, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPointConfiguration.html.
Text
Wolfram Research (2020), RandomPointConfiguration, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPointConfiguration.html.
Wolfram Research (2020), RandomPointConfiguration, Wolfram Language function, https://reference.wolfram.com/language/ref/RandomPointConfiguration.html.
CMS
Wolfram Language. 2020. "RandomPointConfiguration." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomPointConfiguration.html.
Wolfram Language. 2020. "RandomPointConfiguration." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RandomPointConfiguration.html.
APA
Wolfram Language. (2020). RandomPointConfiguration. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomPointConfiguration.html
Wolfram Language. (2020). RandomPointConfiguration. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RandomPointConfiguration.html
BibTeX
@misc{reference.wolfram_2025_randompointconfiguration, author="Wolfram Research", title="{RandomPointConfiguration}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/RandomPointConfiguration.html}", note=[Accessed: 27-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_randompointconfiguration, organization={Wolfram Research}, title={RandomPointConfiguration}, year={2020}, url={https://reference.wolfram.com/language/ref/RandomPointConfiguration.html}, note=[Accessed: 27-March-2025
]}