CotDegrees
✖
CotDegrees
Details

- CotDegrees and other trigonometric functions are studied in high-school geometry courses and are also used in many scientific disciplines.
- The argument of CotDegrees is assumed to be in degrees.
- CotDegrees is automatically evaluated when its argument is a simple rational multiple of
; for more complicated rational multiples, FunctionExpand can sometimes be used.
- CotDegrees of angle
is the ratio of the adjacent side to the opposite side of a right triangle:
- CotDegrees is related to SinDegrees and CosDegrees by the identity
.
- For certain special arguments, CotDegrees automatically evaluates to exact values.
- CotDegrees can be evaluated to arbitrary numerical precision.
- CotDegrees automatically threads over lists.
- CotDegrees can be used with Interval, CenteredInterval and Around objects.
- Mathematical function, suitable for both symbolic and numerical manipulation.

Examples
open allclose allBasic Examples (6)Summary of the most common use cases
The argument is given in radians:

https://wolfram.com/xid/0h2jtih46c-xw4

Calculate CotDegrees of 45 Degree for a right triangle with unit sides:

Calculate the cotangent by hand:

https://wolfram.com/xid/0h2jtih46c-w2r90o


https://wolfram.com/xid/0h2jtih46c-yqnf8d

Solve a trigonometric equation:

https://wolfram.com/xid/0h2jtih46c-0yb4bb

Solve a trigonometric inequality:

https://wolfram.com/xid/0h2jtih46c-m2b8vb


https://wolfram.com/xid/0h2jtih46c-k67


https://wolfram.com/xid/0h2jtih46c-q10

Scope (46)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0h2jtih46c-l274ju


https://wolfram.com/xid/0h2jtih46c-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0h2jtih46c-xth5g

CotDegrees can take complex number inputs:

https://wolfram.com/xid/0h2jtih46c-mzm

Evaluate CotDegrees efficiently at high precision:

https://wolfram.com/xid/0h2jtih46c-di5gcr


https://wolfram.com/xid/0h2jtih46c-bq2c6r

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0h2jtih46c-fftihp


https://wolfram.com/xid/0h2jtih46c-m55lc5


https://wolfram.com/xid/0h2jtih46c-63zq4

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0h2jtih46c-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0h2jtih46c-ont

Or compute the matrix CotDegrees function using MatrixFunction:

https://wolfram.com/xid/0h2jtih46c-o5jpo

Specific Values (6)
Values of CotDegrees at fixed points:

https://wolfram.com/xid/0h2jtih46c-69o7lt

CotDegrees has exact values at rational multiples of 60 degrees:

https://wolfram.com/xid/0h2jtih46c-nww7l


https://wolfram.com/xid/0h2jtih46c-bdij6w


https://wolfram.com/xid/0h2jtih46c-drqkdo

Simple exact values are generated automatically:

https://wolfram.com/xid/0h2jtih46c-knq

More complicated cases require explicit use of FunctionExpand:

https://wolfram.com/xid/0h2jtih46c-o9c


https://wolfram.com/xid/0h2jtih46c-h8r

Zeros of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-cw39qs

Find one zero using Solve:

https://wolfram.com/xid/0h2jtih46c-0hynlo


https://wolfram.com/xid/0h2jtih46c-f2hrld


https://wolfram.com/xid/0h2jtih46c-cj5txq

Singular points of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-kb0ip3

Visualization (4)
Plot the CotDegrees function:

https://wolfram.com/xid/0h2jtih46c-ecj8m7

Plot over a subset of the complexes:

https://wolfram.com/xid/0h2jtih46c-kiedlx

Plot the real part of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-bo5grg

Plot the imaginary part of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-ceeo54

Polar plot with CotDegrees:

https://wolfram.com/xid/0h2jtih46c-epb4bn

Function Properties (13)
CotDegrees is a periodic function with a period of :

https://wolfram.com/xid/0h2jtih46c-zf82es

Check this with FunctionPeriod:

https://wolfram.com/xid/0h2jtih46c-ewxrep

Real domain of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-cl7ele


https://wolfram.com/xid/0h2jtih46c-de3irc

CotDegrees achieves all real values:

https://wolfram.com/xid/0h2jtih46c-evf2yr


https://wolfram.com/xid/0h2jtih46c-bguifs

CotDegrees is an odd function:

https://wolfram.com/xid/0h2jtih46c-dnla5q

CotDegrees has the mirror property :

https://wolfram.com/xid/0h2jtih46c-heoddu

CotDegrees is not an analytic function:

https://wolfram.com/xid/0h2jtih46c-h5x4l2


https://wolfram.com/xid/0h2jtih46c-e434t9

CotDegrees is monotonic in a specific range:

https://wolfram.com/xid/0h2jtih46c-g6kynf


https://wolfram.com/xid/0h2jtih46c-nlz7s

CotDegrees is not injective:

https://wolfram.com/xid/0h2jtih46c-gi38d7


https://wolfram.com/xid/0h2jtih46c-ctca0g

CotDegrees is surjective:

https://wolfram.com/xid/0h2jtih46c-hkqec4


https://wolfram.com/xid/0h2jtih46c-hdm869

CotDegrees is neither non-negative nor non-positive:

https://wolfram.com/xid/0h2jtih46c-84dui

CotDegrees has both singularities and discontinuities in points multiple to 180:

https://wolfram.com/xid/0h2jtih46c-mdtl3h


https://wolfram.com/xid/0h2jtih46c-mn5jws

CotDegrees is neither convex nor concave:

https://wolfram.com/xid/0h2jtih46c-kdss3

CotDegrees is convex for x in [0,90]:

https://wolfram.com/xid/0h2jtih46c-io426y


https://wolfram.com/xid/0h2jtih46c-bb47uv

TraditionalForm formatting:

https://wolfram.com/xid/0h2jtih46c-6k0d4

Differentiation (3)

https://wolfram.com/xid/0h2jtih46c-mmas49


https://wolfram.com/xid/0h2jtih46c-nfbe0l


https://wolfram.com/xid/0h2jtih46c-fxwmfc


https://wolfram.com/xid/0h2jtih46c-56llx

Integration (3)
Compute the indefinite integrals of CotDegrees via Integrate:

https://wolfram.com/xid/0h2jtih46c-bponid


https://wolfram.com/xid/0h2jtih46c-lzn

Definite integral for CotDegrees over a period:

https://wolfram.com/xid/0h2jtih46c-b9jw7l


https://wolfram.com/xid/0h2jtih46c-gagfl7


https://wolfram.com/xid/0h2jtih46c-nccd8x

Series Expansions (3)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0h2jtih46c-ewr1h8

Plot the first three approximations for CotDegrees around :

https://wolfram.com/xid/0h2jtih46c-binhar

Asymptotic expansion at a singular point:

https://wolfram.com/xid/0h2jtih46c-klydni

CotDegrees can be applied to power series:

https://wolfram.com/xid/0h2jtih46c-f7dy9o

Function Identities and Simplifications (5)
Double-angle formula using TrigExpand:

https://wolfram.com/xid/0h2jtih46c-mjplp7


https://wolfram.com/xid/0h2jtih46c-nfe4y


https://wolfram.com/xid/0h2jtih46c-ngj

Recover the original expression using TrigReduce:

https://wolfram.com/xid/0h2jtih46c-byn

Convert sums to products using TrigFactor:

https://wolfram.com/xid/0h2jtih46c-yiz

Convert to exponentials using TrigToExp:

https://wolfram.com/xid/0h2jtih46c-i6a

Function Representations (3)
Representation through TanDegrees:

https://wolfram.com/xid/0h2jtih46c-df304y

Representation through SinDegrees and CosDegrees:

https://wolfram.com/xid/0h2jtih46c-3iqpk4

Representation through SecDegrees and CscDegrees:

https://wolfram.com/xid/0h2jtih46c-xeyl9r

Applications (12)Sample problems that can be solved with this function
Basic Trigonomometric Applications (2)
Given , find the CotDegrees of the angle
using the identity
:

https://wolfram.com/xid/0h2jtih46c-pzrtpu

Find the missing adjacent side length of a right triangle if the opposite side is 5 and the angle is 30 degrees:

https://wolfram.com/xid/0h2jtih46c-s8b2gs

Trigonomometric Identities (4)
Calculate the CotDegrees value of 105 degrees using the sum and difference formulas:

https://wolfram.com/xid/0h2jtih46c-l0w2xd


https://wolfram.com/xid/0h2jtih46c-22bxr8

Compare with the result of direct calculation:

https://wolfram.com/xid/0h2jtih46c-b7qsg2

Calculate the CotDegrees value of 15 degrees using the half-angle formula :

https://wolfram.com/xid/0h2jtih46c-rj4ct4

Compare this result with directly calculated CotDegrees:

https://wolfram.com/xid/0h2jtih46c-w17g1e

Simplify trigonometric expressions:

https://wolfram.com/xid/0h2jtih46c-d2c66e


https://wolfram.com/xid/0h2jtih46c-ci2htt

Verify trigonometric identities:

https://wolfram.com/xid/0h2jtih46c-ldqktj

Trigonomometric Equations (2)
Solve a basic trigonometric equation:

https://wolfram.com/xid/0h2jtih46c-9jfx4g

Solve trigonometric equations including other trigonometric functions:

https://wolfram.com/xid/0h2jtih46c-qmswx7

Solve trigonometric equations with condition:

https://wolfram.com/xid/0h2jtih46c-7wne7o

Trigonomometric Inequalities (2)
Advanced Applications (2)
Generate a plot over the complex argument plane:

https://wolfram.com/xid/0h2jtih46c-t3s

Addition theorem for CotDegrees function:

https://wolfram.com/xid/0h2jtih46c-bqgplf

Properties & Relations (13)Properties of the function, and connections to other functions
Check that 1 degree is radians:

https://wolfram.com/xid/0h2jtih46c-qtrjkp

Basic parity and periodicity properties of the cotangent function are automatically applied:

https://wolfram.com/xid/0h2jtih46c-rxj


https://wolfram.com/xid/0h2jtih46c-fg9


https://wolfram.com/xid/0h2jtih46c-uek


https://wolfram.com/xid/0h2jtih46c-x21

Simplify with assumptions on parameters:

https://wolfram.com/xid/0h2jtih46c-nd1


https://wolfram.com/xid/0h2jtih46c-w1t

Complicated expressions containing trigonometric functions do not simplify automatically:

https://wolfram.com/xid/0h2jtih46c-vtf


https://wolfram.com/xid/0h2jtih46c-vt3

Use FunctionExpand to express CotDegrees in terms of radicals:

https://wolfram.com/xid/0h2jtih46c-sub


https://wolfram.com/xid/0h2jtih46c-g37

Compositions with the inverse trigonometric functions:

https://wolfram.com/xid/0h2jtih46c-quy


https://wolfram.com/xid/0h2jtih46c-zio

Solve a trigonometric equation:

https://wolfram.com/xid/0h2jtih46c-maj

Numerically find a root of a transcendental equation:

https://wolfram.com/xid/0h2jtih46c-fyo

Plot the function to check if the solution is correct:

https://wolfram.com/xid/0h2jtih46c-ds23ya

The zeros of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-t4j

The poles of CotDegrees:

https://wolfram.com/xid/0h2jtih46c-r3q

Calculate residue symbolically and numerically:

https://wolfram.com/xid/0h2jtih46c-ykd


https://wolfram.com/xid/0h2jtih46c-k9l

FunctionExpand applied to CotDegrees generates expressions in trigonometric functions in radians:

https://wolfram.com/xid/0h2jtih46c-fujuf5


https://wolfram.com/xid/0h2jtih46c-roe9wv

ExpToTrig applied to the outputs of TrigToExp will generate trigonometric functions in radians:

https://wolfram.com/xid/0h2jtih46c-bl9bv4


https://wolfram.com/xid/0h2jtih46c-lc9q8e


https://wolfram.com/xid/0h2jtih46c-egxn3i

CotDegrees is a numeric function:

https://wolfram.com/xid/0h2jtih46c-qwm

Possible Issues (1)Common pitfalls and unexpected behavior
Neat Examples (4)Surprising or curious use cases
Trigonometric functions are ratios that relate the angle measures of a right triangle to the length of its sides:


https://wolfram.com/xid/0h2jtih46c-2yke9s

https://wolfram.com/xid/0h2jtih46c-nytfuw

Solve trigonometric equations:

https://wolfram.com/xid/0h2jtih46c-cvyldi

Add some condition on the solution:

https://wolfram.com/xid/0h2jtih46c-r4zle9

Some arguments can be expressed as a finite sequence of nested radicals:

https://wolfram.com/xid/0h2jtih46c-sjr


https://wolfram.com/xid/0h2jtih46c-kd4mp4

Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.
Text
Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.
Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.
CMS
Wolfram Language. 2024. "CotDegrees." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CotDegrees.html.
Wolfram Language. 2024. "CotDegrees." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CotDegrees.html.
APA
Wolfram Language. (2024). CotDegrees. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CotDegrees.html
Wolfram Language. (2024). CotDegrees. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CotDegrees.html
BibTeX
@misc{reference.wolfram_2025_cotdegrees, author="Wolfram Research", title="{CotDegrees}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/CotDegrees.html}", note=[Accessed: 02-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_cotdegrees, organization={Wolfram Research}, title={CotDegrees}, year={2024}, url={https://reference.wolfram.com/language/ref/CotDegrees.html}, note=[Accessed: 02-June-2025
]}