WOLFRAM

gives the cotangent of degrees.

Details

  • CotDegrees and other trigonometric functions are studied in high-school geometry courses and are also used in many scientific disciplines.
  • The argument of CotDegrees is assumed to be in degrees.
  • CotDegrees is automatically evaluated when its argument is a simple rational multiple of ; for more complicated rational multiples, FunctionExpand can sometimes be used.
  • CotDegrees of angle is the ratio of the adjacent side to the opposite side of a right triangle:
  • CotDegrees is related to SinDegrees and CosDegrees by the identity TemplateBox[{x}, CotDegrees]=(TemplateBox[{x}, CosDegrees])/(TemplateBox[{x}, SinDegrees]).
  • For certain special arguments, CotDegrees automatically evaluates to exact values.
  • CotDegrees can be evaluated to arbitrary numerical precision.
  • CotDegrees automatically threads over lists.
  • CotDegrees can be used with Interval, CenteredInterval and Around objects.
  • Mathematical function, suitable for both symbolic and numerical manipulation.

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

The argument is given in radians:

Out[1]=1

Calculate CotDegrees of 45 Degree for a right triangle with unit sides:

Calculate the cotangent by hand:

Out[2]=2

Verify the result:

Out[3]=3

Solve a trigonometric equation:

Out[1]=1

Solve a trigonometric inequality:

Out[1]=1

Plot over two periods:

Out[1]=1

Series expansion at 0:

Out[1]=1

Scope  (46)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

CotDegrees can take complex number inputs:

Out[1]=1

Evaluate CotDegrees efficiently at high precision:

Out[1]=1
Out[2]=2

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Out[1]=1
Out[2]=2
Out[3]=3

Or compute average-case statistical intervals using Around:

Out[4]=4

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix CotDegrees function using MatrixFunction:

Out[2]=2

Specific Values  (6)

Values of CotDegrees at fixed points:

Out[1]=1

CotDegrees has exact values at rational multiples of 60 degrees:

Out[1]=1

Values at infinity:

Out[1]=1
Out[2]=2

Simple exact values are generated automatically:

Out[1]=1

More complicated cases require explicit use of FunctionExpand:

Out[2]=2
Out[3]=3

Zeros of CotDegrees:

Out[1]=1

Find one zero using Solve:

Out[2]=2

Substitute in the result:

Out[3]=3

Visualize the result:

Out[4]=4

Singular points of CotDegrees:

Out[1]=1

Visualization  (4)

Plot the CotDegrees function:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Plot the real part of CotDegrees:

Out[1]=1

Plot the imaginary part of CotDegrees:

Out[2]=2

Polar plot with CotDegrees:

Out[1]=1

Function Properties  (13)

CotDegrees is a periodic function with a period of :

Out[1]=1

Check this with FunctionPeriod:

Out[2]=2

Real domain of CotDegrees:

Out[1]=1

Complex domain:

Out[2]=2

CotDegrees achieves all real values:

Out[1]=1

The range for complex values:

Out[2]=2

CotDegrees is an odd function:

Out[1]=1

CotDegrees has the mirror property cot(TemplateBox[{z}, Conjugate])=TemplateBox[{{cot, (, z, )}}, Conjugate]:

Out[1]=1

CotDegrees is not an analytic function:

Out[1]=1

However, it is meromorphic:

Out[2]=2

CotDegrees is monotonic in a specific range:

Out[1]=1
Out[2]=2

CotDegrees is not injective:

Out[1]=1
Out[2]=2

CotDegrees is surjective:

Out[1]=1
Out[2]=2

CotDegrees is neither non-negative nor non-positive:

Out[1]=1

CotDegrees has both singularities and discontinuities in points multiple to 180:

Out[1]=1
Out[2]=2

CotDegrees is neither convex nor concave:

Out[1]=1

CotDegrees is convex for x in [0,90]:

Out[2]=2
Out[3]=3

TraditionalForm formatting:

Differentiation  (3)

First derivative:

Out[1]=1

Higher derivatives:

Out[1]=1
Out[2]=2

Formula for the ^(th) derivative:

Out[1]=1

Integration  (3)

Compute the indefinite integrals of CotDegrees via Integrate:

Out[1]=1
Out[2]=2

Definite integral for CotDegrees over a period:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2

Series Expansions  (3)

Find the Taylor expansion using Series:

Out[1]=1

Plot the first three approximations for CotDegrees around :

Out[3]=3

Asymptotic expansion at a singular point:

Out[1]=1

CotDegrees can be applied to power series:

Out[1]=1

Function Identities and Simplifications  (5)

Double-angle formula using TrigExpand:

Out[1]=1

Angle sum formula:

Out[1]=1

Multipleangle expressions:

Out[1]=1

Recover the original expression using TrigReduce:

Out[2]=2

Convert sums to products using TrigFactor:

Out[1]=1

Convert to exponentials using TrigToExp:

Out[1]=1

Function Representations  (3)

Representation through TanDegrees:

Out[1]=1

Representation through SinDegrees and CosDegrees:

Out[1]=1

Representation through SecDegrees and CscDegrees:

Out[1]=1

Applications  (12)Sample problems that can be solved with this function

Basic Trigonomometric Applications  (2)

Given , find the CotDegrees of the angle using the identity :

Out[1]=1

Find the missing adjacent side length of a right triangle if the opposite side is 5 and the angle is 30 degrees:

Out[1]=1

Trigonomometric Identities  (4)

Calculate the CotDegrees value of 105 degrees using the sum and difference formulas:

Out[1]=1
Out[2]=2

Compare with the result of direct calculation:

Out[3]=3

Calculate the CotDegrees value of 15 degrees using the half-angle formula :

Out[1]=1

Compare this result with directly calculated CotDegrees:

Out[2]=2

Simplify trigonometric expressions:

Out[1]=1
Out[2]=2

Verify trigonometric identities:

Out[1]=1

Trigonomometric Equations  (2)

Solve a basic trigonometric equation:

Out[1]=1

Solve trigonometric equations including other trigonometric functions:

Out[1]=1

Solve trigonometric equations with condition:

Out[2]=2

Trigonomometric Inequalities  (2)

Solve this trigonometric inequality:

Out[1]=1

Solve this trigonometric inequality including other trigonometric functions:

Out[1]=1

Advanced Applications  (2)

Generate a plot over the complex argument plane:

Out[1]=1

Addition theorem for CotDegrees function:

Out[1]=1

Properties & Relations  (13)Properties of the function, and connections to other functions

Check that 1 degree is radians:

Out[1]=1

Basic parity and periodicity properties of the cotangent function are automatically applied:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Simplify with assumptions on parameters:

Out[1]=1
Out[2]=2

Complicated expressions containing trigonometric functions do not simplify automatically:

Out[1]=1
Out[2]=2

Use FunctionExpand to express CotDegrees in terms of radicals:

Out[1]=1
Out[2]=2

Compositions with the inverse trigonometric functions:

Out[1]=1
Out[2]=2

Solve a trigonometric equation:

Out[1]=1

Numerically find a root of a transcendental equation:

Out[1]=1

Plot the function to check if the solution is correct:

Out[2]=2

The zeros of CotDegrees:

Out[1]=1

The poles of CotDegrees:

Out[2]=2

Calculate residue symbolically and numerically:

Out[1]=1
Out[2]=2

FunctionExpand applied to CotDegrees generates expressions in trigonometric functions in radians:

Out[1]=1
Out[2]=2

ExpToTrig applied to the outputs of TrigToExp will generate trigonometric functions in radians:

Out[1]=1
Out[2]=2
Out[3]=3

CotDegrees is a numeric function:

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

Machine-precision input is insufficient to give a correct answer:

Out[1]=1

With exact input, the answer is correct:

Out[2]=2

Neat Examples  (4)Surprising or curious use cases

Trigonometric functions are ratios that relate the angle measures of a right triangle to the length of its sides:

Solve trigonometric equations:

Out[1]=1

Add some condition on the solution:

Out[2]=2

Some arguments can be expressed as a finite sequence of nested radicals:

Out[1]=1

Indefinite integral of :

Out[1]=1
Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.
Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.

Text

Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.

Wolfram Research (2024), CotDegrees, Wolfram Language function, https://reference.wolfram.com/language/ref/CotDegrees.html.

CMS

Wolfram Language. 2024. "CotDegrees." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CotDegrees.html.

Wolfram Language. 2024. "CotDegrees." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CotDegrees.html.

APA

Wolfram Language. (2024). CotDegrees. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CotDegrees.html

Wolfram Language. (2024). CotDegrees. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CotDegrees.html

BibTeX

@misc{reference.wolfram_2025_cotdegrees, author="Wolfram Research", title="{CotDegrees}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/CotDegrees.html}", note=[Accessed: 02-June-2025 ]}

@misc{reference.wolfram_2025_cotdegrees, author="Wolfram Research", title="{CotDegrees}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/CotDegrees.html}", note=[Accessed: 02-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_cotdegrees, organization={Wolfram Research}, title={CotDegrees}, year={2024}, url={https://reference.wolfram.com/language/ref/CotDegrees.html}, note=[Accessed: 02-June-2025 ]}

@online{reference.wolfram_2025_cotdegrees, organization={Wolfram Research}, title={CotDegrees}, year={2024}, url={https://reference.wolfram.com/language/ref/CotDegrees.html}, note=[Accessed: 02-June-2025 ]}