Cumulant
Cumulant[data,r]
gives the r cumulant of data.
Cumulant[data,{r1,…,rm} ]
gives the multivariate cumulant of order {r1,…,rm} of data.
Cumulant[,r]
gives the r cumulant of the distribution dist.
Cumulant[r]
represents the r formal cumulant.
Details
- Formally, the r cumulant is defined as the coefficient of the Taylor series of the CumulantGeneratingFunction.
- The first few cumulants expressed in terms of moments:
-
- In general, MomentConvert[Cumulant[r],"Moment"] gives the in terms of moments.
- Cumulant[data,r] effectively uses MomentConvert to compute it in terms of other moments for data.
- For x∈Arrays[{n1,n2,… ,nk}], Cumulant[x,r] is equivalent to ArrayReduce[Cumulant[#,r]&,data,1]. »
- For x∈Arrays[{n1,n2,… ,nk}], Cumulant[x,{r1,…,rm}] is equivalent to ArrayReduce[Cumulant[#,{r1,…,rm}]&,x,{{1},{2}}]. »
- Cumulant handles both numerical and symbolic data.
- The data can have the following additional forms and interpretations:
-
Association the values (the keys are ignored) » WeightedData weighted mean, based on the underlying EmpiricalDistribution » EventData based on the underlying SurvivalDistribution » TimeSeries, TemporalData, … vector or array of values (the time stamps ignored) » Image,Image3D RGB channel's values or grayscale intensity value » Audio amplitude values of all channels » DateObject, TimeObject list of dates or list of times » - For a distribution dist with G=CumulantGeneratingFunction[,…]:
-
Cumulant[,r] » Cumulant[dist,{r1,…,rm}] » - For a random process proc, the cumulant function can be computed for slice distribution at time t, SliceDistribution[proc,t], as [t]=Cumulant[SliceDistribution[proc,t],r]. »
- Cumulant[r] can be used in such functions as MomentConvert and MomentEvaluate, etc. »
Examples
open allclose allBasic Examples (3)
Scope (26)
Basic Uses (6)
Exact input yields exact output:
Approximate input yields approximate output:
Find cumulants of WeightedData:
Find a cumulant of EventData:
Find a cumulant of TimeSeries:
Array Data (5)
For a matrix, Cumulant gives columnwise cumulants:
For an array, Cumulant gives columnwise cumulants at the first level:
When the input is an Association, Cumulant works on its values:
SparseArray data can be used just like dense arrays:
Compute the multivariate cumulant of an array in terms of its raw moments:
Image and Audio Data (2)
Channelwise cumulant of an RGB image:
Cumulant intensity value of a grayscale image:
On audio objects, Cumulant works channelwise:
Date and Time (4)
Distribution and Process Cumulants (5)
Scalar cumulant for univariate distributions:
Scalar cumulant for multivariate distributions:
Joint cumulant for multivariate distributions:
Compute a cumulant for a symbolic order r:
A cumulant may only evaluate for specific orders:
A cumulant may only evaluate numerically:
Cumulants for derived distributions:
Cumulant function for a random process:
Find a cumulant of TemporalData at time t=0.5:
Find the corresponding cumulant function together with all the simulations:
Formal Cumulants (4)
TraditionalForm formatting for formal cumulants:
Convert combinations of formal moments to an expression involving Cumulant:
Evaluate an expression involving formal cumulants for a distribution:
Find a sample estimator for an expression involving Cumulant:
Applications (5)
Estimate parameters of a distribution using the method of cumulants:
The law of large numbers states that a sample moment approaches the population moment as the sample size increases. Use Histogram to show the probability distribution of sample cumulant of standard normal random variates for different sample sizes:
Edgeworth's expansion of order :
Approximate SechDistribution:
Compute a moving cumulant for some data:
Compute cumulants for slices of a collection of paths of a random process:
Properties & Relations (5)
First cumulant is equivalent to the first moment :
Second cumulant is equivalent to the second central moment :
Third cumulant is equivalent to the third central moment :
Cumulant is equal to the derivative of the cumulant-generating function at zero :
Use Cumulant directly:
Find the cumulant-generating function using GeneratingFunction:
Check using CumulantGeneratingFunction:
Formally, cumulants can be computed using the fact that CumulantGeneratingFunction[dist,t] is given by Log[MomentGeneratingFunction[dist,t]]:
Plug in the definition for the moments in terms of their generating function:
Sample estimator of Cumulant on data is biased:
Find a sampling population expectation, assuming size :
Construct an unbiased sample estimator using PowerSymmetricPolynomial:
Verify unbiasedness on a small sample size:
The sample estimator is biased:
Compare with the sampling population expectation of the sample estimator:
Possible Issues (1)
Neat Examples (2)
Find an unbiased estimator for a product of cumulants:
Check the sampling population expectation:
The distribution of Cumulant estimates for 20, 100, and 300 samples:
Text
Wolfram Research (2010), Cumulant, Wolfram Language function, https://reference.wolfram.com/language/ref/Cumulant.html (updated 2024).
CMS
Wolfram Language. 2010. "Cumulant." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/Cumulant.html.
APA
Wolfram Language. (2010). Cumulant. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Cumulant.html