DerivativeFilter
✖
DerivativeFilter
computes the derivative at a Gaussian scale of standard deviation σ.
Details and Options

- DerivativeFilter is a linear filter that computes the derivatives of data based on a spline interpolation model. Regularization with a Gaussian kernel of standard deviation σ (defaults to 0) can be used to reduce susceptibility to noise.
- The data can be any of the following:
-
list arbitrary-rank numerical array tseries temporal data such as TimeSeries, TemporalData, … image arbitrary Image or Image3D object audio an Audio object - DerivativeFilter operates separately on each level of data.
- DerivativeFilter[image,…] uses the array coordinate system, where the first coordinate runs from the top to the bottom of image, and the second coordinate increases from left to right.
- DerivativeFilter gives a result with the same dimensions as data.
- DerivativeFilter can take the following options:
-
InterpolationOrder Automatic interpolation order up to 9 Padding "Fixed" padding method - With Padding->{pad1,pad2,…}, different padding schemes can be used for every dimension of data.
- The derivative order has to be smaller than the specified interpolation order.

Examples
open allclose allBasic Examples (3)Summary of the most common use cases
A horizontal derivative of an image:

https://wolfram.com/xid/0n4o5rakaay-8ol86

A regularized horizontal derivative of an image:

https://wolfram.com/xid/0n4o5rakaay-fu1fu1


https://wolfram.com/xid/0n4o5rakaay-cpogvf

https://wolfram.com/xid/0n4o5rakaay-bufkz

Scope (13)Survey of the scope of standard use cases
Data (5)
First-order derivatives of a 2D array:

https://wolfram.com/xid/0n4o5rakaay-j75tck

Obtain the first derivative of a TimeSeries object:

https://wolfram.com/xid/0n4o5rakaay-brhx0t

Filter an Audio signal:

https://wolfram.com/xid/0n4o5rakaay-p90slf


https://wolfram.com/xid/0n4o5rakaay-blimww

Vertical derivative of a color image:

https://wolfram.com/xid/0n4o5rakaay-lrjmcr

Vertical derivative of a 3D image:

https://wolfram.com/xid/0n4o5rakaay-2j4g4

Parameters (8)

https://wolfram.com/xid/0n4o5rakaay-b4m3ux

First, second and third derivatives of a step sequence:

https://wolfram.com/xid/0n4o5rakaay-h4o6px

Vertical derivative of an image:

https://wolfram.com/xid/0n4o5rakaay-f1k2ux


https://wolfram.com/xid/0n4o5rakaay-io6ky5

Second-order derivative in both dimensions:

https://wolfram.com/xid/0n4o5rakaay-1ogs6y

Compute several derivatives of an image:

https://wolfram.com/xid/0n4o5rakaay-ufjqx9

Vertical derivative of a 3D image:

https://wolfram.com/xid/0n4o5rakaay-hd9qez


https://wolfram.com/xid/0n4o5rakaay-hidjao

Regularize the derivative using Gaussian smoothing:

https://wolfram.com/xid/0n4o5rakaay-52jz9

Horizontal derivative at different Gaussian scales:

https://wolfram.com/xid/0n4o5rakaay-blfu3w

Options (3)Common values & functionality for each option
InterpolationOrder (1)
Filtering an array using different InterpolationOrder values:

https://wolfram.com/xid/0n4o5rakaay-60lt4m

Padding (2)
Derivative filtering using different padding schemes:

https://wolfram.com/xid/0n4o5rakaay-eteyf6

First derivatives of a grayscale image using different padding schemes:

https://wolfram.com/xid/0n4o5rakaay-brspfd

Use different padding schemes in each spatial direction:

https://wolfram.com/xid/0n4o5rakaay-ckayhg

Applications (5)Sample problems that can be solved with this function

https://wolfram.com/xid/0n4o5rakaay-ff4kjh

Compute the Laplacian of an image at scale σ=6:

https://wolfram.com/xid/0n4o5rakaay-b3qihm


https://wolfram.com/xid/0n4o5rakaay-bixkja


https://wolfram.com/xid/0n4o5rakaay-l53n4l

Get borders from a colored map:

https://wolfram.com/xid/0n4o5rakaay-pjxjsg

Properties & Relations (4)Properties of the function, and connections to other functions
For larger values of , the results of GaussianFilter and DerivativeFilter converge:

https://wolfram.com/xid/0n4o5rakaay-wyk25e


https://wolfram.com/xid/0n4o5rakaay-cx6r7c


https://wolfram.com/xid/0n4o5rakaay-dto5o3

DerivativeFilter and the corresponding derivatives of a spline interpolation return the same values:

https://wolfram.com/xid/0n4o5rakaay-565ixu


https://wolfram.com/xid/0n4o5rakaay-wthnus

Plot the result of the filter on top of the derivative of the interpolating function:

https://wolfram.com/xid/0n4o5rakaay-fy4gw7

Derivative filtering of a binary image gives a grayscale image of a real type:

https://wolfram.com/xid/0n4o5rakaay-qcrj0f

DerivativeFilter is a linear filter:

https://wolfram.com/xid/0n4o5rakaay-dktmv8

Wolfram Research (2010), DerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/DerivativeFilter.html (updated 2016).
Text
Wolfram Research (2010), DerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/DerivativeFilter.html (updated 2016).
Wolfram Research (2010), DerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/DerivativeFilter.html (updated 2016).
CMS
Wolfram Language. 2010. "DerivativeFilter." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/DerivativeFilter.html.
Wolfram Language. 2010. "DerivativeFilter." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/DerivativeFilter.html.
APA
Wolfram Language. (2010). DerivativeFilter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DerivativeFilter.html
Wolfram Language. (2010). DerivativeFilter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DerivativeFilter.html
BibTeX
@misc{reference.wolfram_2025_derivativefilter, author="Wolfram Research", title="{DerivativeFilter}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/DerivativeFilter.html}", note=[Accessed: 30-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_derivativefilter, organization={Wolfram Research}, title={DerivativeFilter}, year={2016}, url={https://reference.wolfram.com/language/ref/DerivativeFilter.html}, note=[Accessed: 30-April-2025
]}