WOLFRAM

is the Kummer confluent hypergeometric function TemplateBox[{a, b, z}, Hypergeometric1F1].

Details

Examples

open allclose all

Basic Examples  (5)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Scope  (40)Survey of the scope of standard use cases

Numerical Evaluation  (5)

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Evaluate for complex arguments and parameters:

Out[1]=1

Evaluate Hypergeometric1F1 efficiently at high precision:

Out[1]=1
Out[2]=2

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Out[1]=1
Out[2]=2

Or compute average-case statistical intervals using Around:

Out[3]=3

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix Hypergeometric1F1 function using MatrixFunction:

Out[2]=2

Specific Values  (4)

Hypergeometric1F1 automatically evaluates to simpler functions for certain parameters:

Out[1]=1
Out[2]=2
Out[3]=3

Limiting values at infinity for some case of Hypergeometric1F1:

Out[1]=1
Out[2]=2
Out[3]=3

Find a value of satisfying the equation TemplateBox[{{1, /, 2}, {sqrt(, 2, )}, x}, Hypergeometric1F1]=2:

Out[1]=1
Out[2]=2

Heun functions can be reduced to hypergeometric functions:

Out[1]=1
Out[2]=2

Visualization  (3)

Plot the Hypergeometric1F1 function:

Out[1]=1

Plot Hypergeometric1F1 as a function of its second parameter:

Out[1]=1

Plot the real part of TemplateBox[{1, {sqrt(, 2, )}, z}, Hypergeometric1F1]:

Out[1]=1

Plot the imaginary part of TemplateBox[{1, {sqrt(, 2, )}, z}, Hypergeometric1F1]:

Out[2]=2

Function Properties  (9)

Real domain of Hypergeometric1F1:

Out[1]=1

Complex domain:

Out[1]=1

TemplateBox[{a, b, z}, Hypergeometric1F1] is an analytic function for real values of and b in TemplateBox[{}, Reals]:

Out[1]=1

For positive values of , it may or may not be analytic:

Out[2]=2
Out[3]=3

Hypergeometric1F1 is neither non-decreasing nor non-increasing except for special values:

Out[1]=1

TemplateBox[{{sqrt(, 3, )}, {sqrt(, 2, )}, z}, Hypergeometric1F1] is not injective:

Out[1]=1
Out[2]=2

TemplateBox[{{sqrt(, 3, )}, {sqrt(, 2, )}, z}, Hypergeometric1F1] is not surjective:

Out[1]=1
Out[2]=2

Hypergeometric1F1 is non-negative for specific values:

Out[1]=1
Out[2]=2

TemplateBox[{{sqrt(, 3, )}, {sqrt(, 2, )}, z}, Hypergeometric1F1] is neither non-negative nor non-positive:

Out[3]=3

TemplateBox[{a, b, z}, Hypergeometric1F1] has both singularity and discontinuity when is a negative integer:

Out[1]=1
Out[2]=2

TemplateBox[{{-, 2}, 1, z}, Hypergeometric1F1] is convex:

Out[1]=1

TemplateBox[{2, 1, z}, Hypergeometric1F1] is neither convex nor concave:

Out[2]=2

TraditionalForm formatting:

Differentiation  (3)

First derivative:

Out[1]=1

Higher derivatives:

Out[1]=1

Plot higher derivatives for and :

Out[2]=2

Formula for the ^(th) derivative:

Out[1]=1

Integration  (3)

Apply Integrate to Hypergeometric1F1:

Out[1]=1

Definite integral of Hypergeometric1F1:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2

Series Expansions  (4)

Taylor expansion for Hypergeometric1F1:

Out[1]=1

Plot the first three approximations for TemplateBox[{{1, /, 2}, {sqrt(, 2, )}, x}, Hypergeometric1F1] around :

Out[4]=4

General term in the series expansion of Hypergeometric1F1:

Out[1]=1

Expand Hypergeometric1F1 in a series around infinity:

Out[1]=1

Apply Hypergeometric1F1 to a power series:

Out[1]=1

Integral Transforms  (2)

Compute the Laplace transform using LaplaceTransform:

Out[1]=1

HankelTransform:

Out[1]=1

Function Identities and Simplifications  (3)

Argument simplification:

Out[1]=1

Sum of the Hypergeometric1F1 functions:

Out[1]=1

Recurrence identity:

Out[1]=1

Function Representations  (4)

Primary definition:

Out[1]=1

Relation to the LaguerreL polynomial:

Out[1]=1

Hypergeometric1F1 can be represented as a DifferentialRoot:

Out[1]=1

Hypergeometric1F1 can be represented in terms of MeijerG:

Out[1]=1
Out[2]=2

Generalizations & Extensions  (1)Generalized and extended use cases

Apply Hypergeometric1F1 to a power series:

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Hydrogen atom radial wave function for continuous spectrum:

Compute the energy eigenvalue from the differential equation:

Out[7]=7

Closed form for Padé approximation of Exp to any order:

Out[1]=1

Compare with explicit approximants:

Out[2]=2

Solve a differential equation:

Out[1]=1

Properties & Relations  (2)Properties of the function, and connections to other functions

Integrate may give results involving Hypergeometric1F1:

Out[1]=1

Use FunctionExpand to convert confluent hypergeometric functions:

Out[1]=1
Wolfram Research (1988), Hypergeometric1F1, Wolfram Language function, https://reference.wolfram.com/language/ref/Hypergeometric1F1.html (updated 2022).
Wolfram Research (1988), Hypergeometric1F1, Wolfram Language function, https://reference.wolfram.com/language/ref/Hypergeometric1F1.html (updated 2022).

Text

Wolfram Research (1988), Hypergeometric1F1, Wolfram Language function, https://reference.wolfram.com/language/ref/Hypergeometric1F1.html (updated 2022).

Wolfram Research (1988), Hypergeometric1F1, Wolfram Language function, https://reference.wolfram.com/language/ref/Hypergeometric1F1.html (updated 2022).

CMS

Wolfram Language. 1988. "Hypergeometric1F1." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/Hypergeometric1F1.html.

Wolfram Language. 1988. "Hypergeometric1F1." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/Hypergeometric1F1.html.

APA

Wolfram Language. (1988). Hypergeometric1F1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hypergeometric1F1.html

Wolfram Language. (1988). Hypergeometric1F1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hypergeometric1F1.html

BibTeX

@misc{reference.wolfram_2025_hypergeometric1f1, author="Wolfram Research", title="{Hypergeometric1F1}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/Hypergeometric1F1.html}", note=[Accessed: 15-May-2025 ]}

@misc{reference.wolfram_2025_hypergeometric1f1, author="Wolfram Research", title="{Hypergeometric1F1}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/Hypergeometric1F1.html}", note=[Accessed: 15-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_hypergeometric1f1, organization={Wolfram Research}, title={Hypergeometric1F1}, year={2022}, url={https://reference.wolfram.com/language/ref/Hypergeometric1F1.html}, note=[Accessed: 15-May-2025 ]}

@online{reference.wolfram_2025_hypergeometric1f1, organization={Wolfram Research}, title={Hypergeometric1F1}, year={2022}, url={https://reference.wolfram.com/language/ref/Hypergeometric1F1.html}, note=[Accessed: 15-May-2025 ]}