# InverseFourierSinTransform

InverseFourierSinTransform[expr,ω,t]

gives the symbolic inverse Fourier sine transform of expr.

InverseFourierSinTransform[expr,{ω1,ω2,},{t1,t2,}]

gives the multidimensional inverse Fourier sine transform of expr.

# Details and Options

• The inverse Fourier sine transform of a function is by default defined as .
• The multidimensional inverse Fourier sine transform of a function is by default defined as .
• Other definitions are used in some scientific and technical fields.
• Different choices of definitions can be specified using the option FourierParameters.
• With the setting FourierParameters->{a,b}, the inverse Fourier transform computed by InverseFourierSinTransform is .
• Assumptions and other options to Integrate can also be given in InverseFourierSinTransform.

# Examples

open allclose all

## Scope(5)

Elementary functions:

Special functions:

Generalized functions:

Periodic functions:

Multivariate transforms:

## Options(3)

### Assumptions(1)

Use Assumptions to indicate the region of interest for the parameters:

### FourierParameters(1)

The default setting for FourierParameters is {0,1}:

Use a non-default setting for a different definition of the transform:

### GenerateConditions(1)

Use to get parameter conditions for when a result is valid:

## Properties & Relations(3)

Use Asymptotic to compute an asymptotic approximation:

FourierSinTransform and InverseFourierSinTransform are mutual inverses:

For odd functions, results are identical to InverseFourierTransform except for a factor -I:

The results differ by a factor of -I for ω>0:

## Possible Issues(1)

Inverse Fourier sine transforms may require generalized functions such as DiracDelta:

Wolfram Research (1999), InverseFourierSinTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html.

#### Text

Wolfram Research (1999), InverseFourierSinTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html.

#### CMS

Wolfram Language. 1999. "InverseFourierSinTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html.

#### APA

Wolfram Language. (1999). InverseFourierSinTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html

#### BibTeX

@misc{reference.wolfram_2024_inversefouriersintransform, author="Wolfram Research", title="{InverseFourierSinTransform}", year="1999", howpublished="\url{https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html}", note=[Accessed: 12-September-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_inversefouriersintransform, organization={Wolfram Research}, title={InverseFourierSinTransform}, year={1999}, url={https://reference.wolfram.com/language/ref/InverseFourierSinTransform.html}, note=[Accessed: 12-September-2024 ]}