RegionDisjoint
✖
RegionDisjoint
詳細とオプション

- 領域 reg1と reg2は,reg1と reg2の両方に属する点がない場合は互いに素である.
- すべての regiがパラメータを含まない領域である,つまりConstantRegionQ[regi]がTrueであれば,その領域は点集合であり,一般にTrueかFalseが返される.
- regiの中にパラメータに依存するものがある,つまりConstantRegionQ[regi]がFalseであれば,regiは領域の族を表し,RegionDisjointは領域が互いに素であるようなパラメータの条件を計算しようとする.
- 次は使用可能なオプションである.
-
Assumptions $Assumptions パラメータについて行う仮定 GenerateConditions False パラメータについての条件を生成するかどうか

例題
すべて開くすべて閉じる例 (2)基本的な使用例

https://wolfram.com/xid/0cps1hws2eafue-bwhjpw

https://wolfram.com/xid/0cps1hws2eafue-2rib4


https://wolfram.com/xid/0cps1hws2eafue-ch8cm5


https://wolfram.com/xid/0cps1hws2eafue-bjcd6

https://wolfram.com/xid/0cps1hws2eafue-bgxf3h

スコープ (17)標準的な使用例のスコープの概要
基本的な用法 (5)

https://wolfram.com/xid/0cps1hws2eafue-w6qsve

https://wolfram.com/xid/0cps1hws2eafue-02ahd7


https://wolfram.com/xid/0cps1hws2eafue-30xgaw


https://wolfram.com/xid/0cps1hws2eafue-rjig01

https://wolfram.com/xid/0cps1hws2eafue-h0qhxp


https://wolfram.com/xid/0cps1hws2eafue-q6upsg


https://wolfram.com/xid/0cps1hws2eafue-tnzyl9

https://wolfram.com/xid/0cps1hws2eafue-w8dsx6


https://wolfram.com/xid/0cps1hws2eafue-skw31u

https://wolfram.com/xid/0cps1hws2eafue-7m7agj


https://wolfram.com/xid/0cps1hws2eafue-4c84kt


https://wolfram.com/xid/0cps1hws2eafue-4yd22o

https://wolfram.com/xid/0cps1hws2eafue-2gdpbp


https://wolfram.com/xid/0cps1hws2eafue-79mtfs

基本的な領域 (4)

https://wolfram.com/xid/0cps1hws2eafue-6v3c9q


https://wolfram.com/xid/0cps1hws2eafue-uiw53u

Ball:

https://wolfram.com/xid/0cps1hws2eafue-0a693w


https://wolfram.com/xid/0cps1hws2eafue-586b1i

Pointを含む内の領域:

https://wolfram.com/xid/0cps1hws2eafue-i2fp1e

https://wolfram.com/xid/0cps1hws2eafue-fcyt2v


https://wolfram.com/xid/0cps1hws2eafue-rvnbj1

Line:

https://wolfram.com/xid/0cps1hws2eafue-gnymc0

https://wolfram.com/xid/0cps1hws2eafue-fw05sb


https://wolfram.com/xid/0cps1hws2eafue-vkk3wa


https://wolfram.com/xid/0cps1hws2eafue-45f5fx

https://wolfram.com/xid/0cps1hws2eafue-if4go9


https://wolfram.com/xid/0cps1hws2eafue-df44np


https://wolfram.com/xid/0cps1hws2eafue-0aeidt

https://wolfram.com/xid/0cps1hws2eafue-te9loc


https://wolfram.com/xid/0cps1hws2eafue-3el84j

Pointを含む内の領域:

https://wolfram.com/xid/0cps1hws2eafue-0q3l4s

https://wolfram.com/xid/0cps1hws2eafue-bc0xud

Line:

https://wolfram.com/xid/0cps1hws2eafue-43jbwg

https://wolfram.com/xid/0cps1hws2eafue-pqbwax


https://wolfram.com/xid/0cps1hws2eafue-t559ku

https://wolfram.com/xid/0cps1hws2eafue-uaqco4


https://wolfram.com/xid/0cps1hws2eafue-66pdr2


https://wolfram.com/xid/0cps1hws2eafue-35c0r8

https://wolfram.com/xid/0cps1hws2eafue-g2ry70


https://wolfram.com/xid/0cps1hws2eafue-g1mnn1

https://wolfram.com/xid/0cps1hws2eafue-3j14kp


https://wolfram.com/xid/0cps1hws2eafue-ilyuwb

https://wolfram.com/xid/0cps1hws2eafue-o1w6u8

内のCuboidとParallelepipedを含む
内の領域:

https://wolfram.com/xid/0cps1hws2eafue-02h4ee

https://wolfram.com/xid/0cps1hws2eafue-29ru1s


https://wolfram.com/xid/0cps1hws2eafue-ufst9o

https://wolfram.com/xid/0cps1hws2eafue-8t7at1

数式定義領域 (4)

https://wolfram.com/xid/0cps1hws2eafue-yhhbit

https://wolfram.com/xid/0cps1hws2eafue-uj1qf1


https://wolfram.com/xid/0cps1hws2eafue-hukmm5

https://wolfram.com/xid/0cps1hws2eafue-jgs1z1


https://wolfram.com/xid/0cps1hws2eafue-eie8c4

https://wolfram.com/xid/0cps1hws2eafue-w59lx6


https://wolfram.com/xid/0cps1hws2eafue-hic6g2

メッシュ領域 (3)
内のMeshRegionを比較する:

https://wolfram.com/xid/0cps1hws2eafue-5yev98

https://wolfram.com/xid/0cps1hws2eafue-ciss1i


https://wolfram.com/xid/0cps1hws2eafue-6p9mf1

https://wolfram.com/xid/0cps1hws2eafue-9eeqmu


https://wolfram.com/xid/0cps1hws2eafue-pmpsgg


https://wolfram.com/xid/0cps1hws2eafue-ron1r2

https://wolfram.com/xid/0cps1hws2eafue-83vd07


https://wolfram.com/xid/0cps1hws2eafue-lz7nun

内のBoundaryMeshRegionを比較する:

https://wolfram.com/xid/0cps1hws2eafue-ki5zz3

https://wolfram.com/xid/0cps1hws2eafue-bt2ml0


https://wolfram.com/xid/0cps1hws2eafue-5m2w0g

https://wolfram.com/xid/0cps1hws2eafue-mmhs4a


https://wolfram.com/xid/0cps1hws2eafue-baxiqs


https://wolfram.com/xid/0cps1hws2eafue-hyseqv

https://wolfram.com/xid/0cps1hws2eafue-zty52f


https://wolfram.com/xid/0cps1hws2eafue-ju4qkk

内のMeshRegionとBoundaryMeshRegionを比較する:

https://wolfram.com/xid/0cps1hws2eafue-eq7jc5

https://wolfram.com/xid/0cps1hws2eafue-n3t5rq


https://wolfram.com/xid/0cps1hws2eafue-w76nww


https://wolfram.com/xid/0cps1hws2eafue-t4fi8f

https://wolfram.com/xid/0cps1hws2eafue-xmhkjc


https://wolfram.com/xid/0cps1hws2eafue-vj7fl4

派生領域 (1)
BooleanRegionを比較する:

https://wolfram.com/xid/0cps1hws2eafue-pk317t

https://wolfram.com/xid/0cps1hws2eafue-15qu2j

オプション (2)各オプションの一般的な値と機能
Assumptions (1)
GenerateConditions (1)
アプリケーション (6)この関数で解くことのできる問題の例
ビュフォン(Buffon)の針の問題のシミュレーションを行うことで を推定する:

https://wolfram.com/xid/0cps1hws2eafue-2il9vg

https://wolfram.com/xid/0cps1hws2eafue-wlrn4t

https://wolfram.com/xid/0cps1hws2eafue-ue779m

https://wolfram.com/xid/0cps1hws2eafue-jod63o

https://wolfram.com/xid/0cps1hws2eafue-evtvyh


https://wolfram.com/xid/0cps1hws2eafue-vmji9a


https://wolfram.com/xid/0cps1hws2eafue-wb0wi4

https://wolfram.com/xid/0cps1hws2eafue-xqccep

https://wolfram.com/xid/0cps1hws2eafue-81bjn2

https://wolfram.com/xid/0cps1hws2eafue-ftu5x1


https://wolfram.com/xid/0cps1hws2eafue-w1gvne

https://wolfram.com/xid/0cps1hws2eafue-4p25ou

https://wolfram.com/xid/0cps1hws2eafue-s9dghf


https://wolfram.com/xid/0cps1hws2eafue-x5zsoj


https://wolfram.com/xid/0cps1hws2eafue-tg8ujy

単位正方形がアニュラスと互いに素であるすべての位置を求める:

https://wolfram.com/xid/0cps1hws2eafue-59poq7

https://wolfram.com/xid/0cps1hws2eafue-4rztjs


https://wolfram.com/xid/0cps1hws2eafue-xjaxyl


https://wolfram.com/xid/0cps1hws2eafue-1eu4a3

https://wolfram.com/xid/0cps1hws2eafue-2t78a9

https://wolfram.com/xid/0cps1hws2eafue-v10re3

https://wolfram.com/xid/0cps1hws2eafue-pootx3

https://wolfram.com/xid/0cps1hws2eafue-2vflrc

アメリカ合衆国の州境を接する各州を接続するネットワークを作る:

https://wolfram.com/xid/0cps1hws2eafue-y5c135

https://wolfram.com/xid/0cps1hws2eafue-b398l5
RegionDisjointがFalseを返すときは,2つの州の多角形が接している:

https://wolfram.com/xid/0cps1hws2eafue-gl3e7l

https://wolfram.com/xid/0cps1hws2eafue-wcikml


https://wolfram.com/xid/0cps1hws2eafue-q69f2g

https://wolfram.com/xid/0cps1hws2eafue-iinn7p

最も不連続の度合いが大きいのは,メイン州と最西部の各州である:

https://wolfram.com/xid/0cps1hws2eafue-f2e723

メイン州からカリフォルニア州までの経路を求め,ハイライトする:

https://wolfram.com/xid/0cps1hws2eafue-6ujoa4

https://wolfram.com/xid/0cps1hws2eafue-wvubzf

特性と関係 (4)この関数の特性および他の関数との関係

https://wolfram.com/xid/0cps1hws2eafue-qxxixn

https://wolfram.com/xid/0cps1hws2eafue-zxr7hs


https://wolfram.com/xid/0cps1hws2eafue-ga16k4

https://wolfram.com/xid/0cps1hws2eafue-pm8r3m


https://wolfram.com/xid/0cps1hws2eafue-szw6pm

非空の領域について,RegionEqualとRegionWithinは,RegionDisjointがTrueを返すときはFalseを返す:

https://wolfram.com/xid/0cps1hws2eafue-8azms6

https://wolfram.com/xid/0cps1hws2eafue-dp28x5


https://wolfram.com/xid/0cps1hws2eafue-28i8v5


https://wolfram.com/xid/0cps1hws2eafue-2vh1ks

FindInstanceを使って2つの領域の共通部分にある点を求める:

https://wolfram.com/xid/0cps1hws2eafue-ecv99p

https://wolfram.com/xid/0cps1hws2eafue-i0zv76


https://wolfram.com/xid/0cps1hws2eafue-vjwpmf

https://wolfram.com/xid/0cps1hws2eafue-mccqg1

RandomPointを使って2つの領域の共通部分にある点の一様サンプリングを求める:

https://wolfram.com/xid/0cps1hws2eafue-gpkt0l

https://wolfram.com/xid/0cps1hws2eafue-o0kf7b

Reduceを使って2つの領域が重なる箇所を求める:

https://wolfram.com/xid/0cps1hws2eafue-42jril


https://wolfram.com/xid/0cps1hws2eafue-ly4r2m

おもしろい例題 (1)驚くような使用例や興味深い使用例

https://wolfram.com/xid/0cps1hws2eafue-8pz9b5

https://wolfram.com/xid/0cps1hws2eafue-r7mtxb

https://wolfram.com/xid/0cps1hws2eafue-ks2qb0

https://wolfram.com/xid/0cps1hws2eafue-fqtjp7

https://wolfram.com/xid/0cps1hws2eafue-sf4m1g


https://wolfram.com/xid/0cps1hws2eafue-4892t8

https://wolfram.com/xid/0cps1hws2eafue-69b9tg

Wolfram Research (2017), RegionDisjoint, Wolfram言語関数, https://reference.wolfram.com/language/ref/RegionDisjoint.html.
テキスト
Wolfram Research (2017), RegionDisjoint, Wolfram言語関数, https://reference.wolfram.com/language/ref/RegionDisjoint.html.
Wolfram Research (2017), RegionDisjoint, Wolfram言語関数, https://reference.wolfram.com/language/ref/RegionDisjoint.html.
CMS
Wolfram Language. 2017. "RegionDisjoint." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDisjoint.html.
Wolfram Language. 2017. "RegionDisjoint." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDisjoint.html.
APA
Wolfram Language. (2017). RegionDisjoint. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDisjoint.html
Wolfram Language. (2017). RegionDisjoint. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDisjoint.html
BibTeX
@misc{reference.wolfram_2025_regiondisjoint, author="Wolfram Research", title="{RegionDisjoint}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RegionDisjoint.html}", note=[Accessed: 11-July-2025
]}
BibLaTeX
@online{reference.wolfram_2025_regiondisjoint, organization={Wolfram Research}, title={RegionDisjoint}, year={2017}, url={https://reference.wolfram.com/language/ref/RegionDisjoint.html}, note=[Accessed: 11-July-2025
]}