Upgrading from:

GraphUtilities`

As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System.

GraphUtilities contains a number of functions that are useful for graph theory applications. A native implementation of this functionality has been added to the Wolfram System. While there is some overlap in naming, the native Wolfram System implementation is fundamentally different in many ways.

A graph in GraphUtilities is specified by a rule list {vi1->vj1,}. In the Wolfram System, Graph[{vi1->vj1,}] yields a graph object with edges vi1->vj,. This graph object displays in a notebook as a plot of the graph and can be manipulated via functions. See the Graphs & Networks guide for an overview of the Wolfram System functionality.

Version 8.0 << GraphUtilities`
AdjacencyMatrix[{b -> b, b  a, a -> b}]

The complete list of GraphUtilities functions and the corresponding equivalent functions in the Wolfram System are shown below.

GraphUtilitiesBuiltin Wolfram Language function
AdjacencyMatrix[g]AdjacencyMatrix[g]
Bicomponents[g]KVertexConnectedComponents[g,2]
ClosenessCentrality[g]ClosenessCentrality[g]
CommunityModularity[g,partition]GraphAssortativity[g,partition]
CommunityStructureAssignment[g]FindGraphCommunities[g]
CommunityStructurePartition[g]FindGraphCommunities[g]
EdgeList[g]EdgeList[g]
ExpressionTreePlot[e]TreeForm[e]
FindHamiltonianCycle[g]FindHamiltonianCycle[g]
GraphCoordinates[g]GraphEmbedding[g]
GraphCoordinates3D[g]GraphEmbedding[g]
GraphDistance[g,i,j]GraphDistance[g,i,j]
GraphDistanceMatrix[g]GraphDistanceMatrix[g]
GraphPath[g,s,t]FindShortestPath[g,s,t]
HamiltonianCycles[g]FindHamiltonianCycle[g]
LinkRankMatrix[g]LinkRankCentrality[g]
LinkRanks[g]LinkRankCentrality[g]
MaximalBipartiteMatching[g]FindIndependentEdgeSet[g]
MaximalIndependentEdgeSet[g]FindIndependentEdgeSet[g]
MaximalIndependentVertexSet[g]FindIndependentVertexSet[g]
MinCut[g,k]FindGraphPartition[g,k]
NeighborhoodSubgraph[g,i,d]NeighborhoodGraph[g,i,d]
NeighborhoodVertices[g,i,d]NeighborhoodGraph[g,i,d]
PageRanks[g]PageRankCentrality[g]
PageRankVector[g]PageRankCentrality[g]
PseudoDiameter[g]GraphDiameter[g]
StrongComponents[g]ConnectedComponents[g]
VertexList[g]VertexList[g]
WeakComponents[g]WeaklyConnectedComponents[g]

See the Graphs & Networks guide for an overview of the Wolfram System functionality.