DiggleGatesPointProcess
✖
DiggleGatesPointProcess
represents a Diggle–Gates point process with constant intensity μ and interaction radius ρ in .
Details


- DiggleGatesPointProcess models point configurations where the points have a softcore decreasing repulsive pairwise interaction for points within radius ρ of each other and that are otherwise uniformly distributed.
-
- The Diggle–Gates point process can be defined as a GibbsPointProcess in terms of its intensity μ and the pair potential
or pair interaction
, which are both parametrized by ρ as follows:
-
pair potential pair interaction - A point configuration
from a Diggle–Gates point process DiggleGatesPointProcess[μ,ρ,d] in an observation region reg has density function
proportional to
, with respect to PoissonPointProcess[1,d].
- The Papangelou conditional density
for adding a point
to a point configuration
is
.
- DiggleGatesPointProcess allows μ and ρ to be any positive number, and d to be any positive integer.
- DiggleGatesPointProcess is a special case of GibbsPointProcess.
- DiggleGatesPointProcess simplifies to PoissonPointProcess when
.
- Possible Method settings in RandomPointConfiguration for StraussPointProcess are:
-
"MCMC" Markov chain Monte Carlo birth and death "Exact" coupling from the past - Possible PointProcessEstimator settings in EstimatedPointProcess for DiggleGatesPointProcess are:
-
Automatic automatically choose the parameter estimator "MaximumPseudoLikelihood" maximize the pseudo-likelihood - DiggleGatesPointProcess can be used with such functions as RipleyK and RandomPointConfiguration.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Sample from a Diggle–Gates point process:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-cr2aru

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-tfb0w

Visualize the points in the sample:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-1pasjf

Sample from a Diggle–Gates point process defined on the surface of the Earth:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-dm5er3


https://wolfram.com/xid/0fojh6vloa9efnb3ueq-h6txtp


https://wolfram.com/xid/0fojh6vloa9efnb3ueq-c96vjb

Scope (2)Survey of the scope of standard use cases
Generate two realizations from a Diggle–Gates point process:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-pjmeyf

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-y8f38b


https://wolfram.com/xid/0fojh6vloa9efnb3ueq-kv2ge2


https://wolfram.com/xid/0fojh6vloa9efnb3ueq-casa32

Generate two realizations from a Diggle–Gates point process on the surface of the Earth:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-omonh

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-ccigf0

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-2efjv

Visualize the point configurations:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-nozzkz


https://wolfram.com/xid/0fojh6vloa9efnb3ueq-e4zptm

Options (3)Common values & functionality for each option
Method (3)
Use the Markov chain Monte Carlo simulation method:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-mr431h

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-q096j

Specify the number of recursive calls to the sampler:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-b28ma3

Specify the length of the run:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-hxjlyn

Provide an initial state for the simulation:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-gx4n0o

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-ca6pqg


https://wolfram.com/xid/0fojh6vloa9efnb3ueq-elpsh

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-kkjl0b

Visualize the points in the sample:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-scg73

Possible Issues (1)Common pitfalls and unexpected behavior
By default, the simulation will run until the number of points converges to a steady state, or until the default number of iterations is reached:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-hrgsq5

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-qppghp


Raise the number of recursive calls to the sampler:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-zur8bp

Specify a larger length of run:

https://wolfram.com/xid/0fojh6vloa9efnb3ueq-7fvnc4

Wolfram Research (2020), DiggleGatesPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html.
Text
Wolfram Research (2020), DiggleGatesPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html.
Wolfram Research (2020), DiggleGatesPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html.
CMS
Wolfram Language. 2020. "DiggleGatesPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html.
Wolfram Language. 2020. "DiggleGatesPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html.
APA
Wolfram Language. (2020). DiggleGatesPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html
Wolfram Language. (2020). DiggleGatesPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html
BibTeX
@misc{reference.wolfram_2025_digglegatespointprocess, author="Wolfram Research", title="{DiggleGatesPointProcess}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html}", note=[Accessed: 27-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_digglegatespointprocess, organization={Wolfram Research}, title={DiggleGatesPointProcess}, year={2020}, url={https://reference.wolfram.com/language/ref/DiggleGatesPointProcess.html}, note=[Accessed: 27-March-2025
]}