DiggleGrattonPointProcess

DiggleGrattonPointProcess[μ,κ,δ,ρ,d]

represents a DiggleGratton point process with constant intensity μ, interaction parameter κ, hard-core interaction radius δ and interaction radius ρ in .

Details

Examples

open allclose all

Basic Examples  (2)

Sample from a DiggleGratton point process:


Visualize the points in the sample:

Sample from a DiggleGratton point process defined on the surface of the Earth:

Visualize the points:

Scope  (2)

Generate three realizations from a DiggleGratton point process in a given region:

Estimate the parameters:

Generate three realizations from a DiggleGratton point process on the surface of the Earth:

Visualize the point configurations:

Estimate the parameters:

Options  (3)

Method  (3)

Sample using the Markov chain Monte Carlo method:

Specify the number of recursive calls to the sampler:

Specify the length of run:

Provide an initial state for the simulation:

Sample using an exact method:

Visualize the points in the sample:

Possible Issues  (1)

By default, the simulation will run until the number of points converges to a steady state, or until the default number of iterations is reached:

Raise the number of recursive calls to the sampler:

Increase the length of run:

Wolfram Research (2020), DiggleGrattonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/DiggleGrattonPointProcess.html.

Text

Wolfram Research (2020), DiggleGrattonPointProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/DiggleGrattonPointProcess.html.

CMS

Wolfram Language. 2020. "DiggleGrattonPointProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiggleGrattonPointProcess.html.

APA

Wolfram Language. (2020). DiggleGrattonPointProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiggleGrattonPointProcess.html

BibTeX

@misc{reference.wolfram_2024_digglegrattonpointprocess, author="Wolfram Research", title="{DiggleGrattonPointProcess}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/DiggleGrattonPointProcess.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_digglegrattonpointprocess, organization={Wolfram Research}, title={DiggleGrattonPointProcess}, year={2020}, url={https://reference.wolfram.com/language/ref/DiggleGrattonPointProcess.html}, note=[Accessed: 20-January-2025 ]}