DiscreteWaveletData
✖
DiscreteWaveletData
yields a discrete wavelet data object with wavelet coefficients coefi corresponding to wavelet index windi, wavelet wave, and wavelet transform wtrans.
yields a discrete wavelet data object assuming data dimensions {d1,…}.
Details and Options




- DiscreteWaveletData[{wind1->coef1,…},…] is always converted to an optimized standard form with structure DiscreteWaveletData[coefs,winds,…].
- The coefficients coefi can be arrays of any depth, Image[…], Sound[…], or SampledSoundList[…] objects.
- The options used by the wavelet transform wtrans can also be used as options to DiscreteWaveletData.
- In standard output format, only an abbreviated wtrans, the number of refinements and dimension of the original data, is printed.
- Normal[DiscreteWaveletData[…]] gives a list of rules {wind1->coef1,wind2->coef2,…} that gives the correspondence between wavelet index windi and the corresponding coefficient array coefi.
- DiscreteWaveletData represents a wavelet decomposition tree, where each node holds wavelet coefficients. Each node in the tree has a unique wavelet index vector that can be used to access wavelet coefficients.
- A wavelet index wind is a vector of integers. The length of the vector represents the refinement level in the wavelet decomposition tree. For an index vector of length
, the first
integers indicate the parent node and the last integer indicates how the current node is related to the parent node.
- For one-dimensional data, the index wind consists of 0s and 1s. A 0 represents lowpass filtering, and a 1 represents highpass filtering.
- For
-dimensional data, the index wind consists of integers from
to
. Each integer represents a vector of operations performed along each dimension of the data, where the exact correspondence is given by MapThread[Rule,{Range[0,2^n-1],Tuples[{lowpass,highpass},n]}].
- The wavelet index wind can be used to extract wavelet coefficients from a DiscreteWaveletData object dwd. The following specifications can be given:
-
dwd[wind] extract coefficients corresponding to wind dwd[{wind1,wind2,…}] extract several wavelet coefficient arrays dwd[wpatt] extract all coefficients whose wind matches the pattern wpatt dwd[All] extract all coefficients dwd[Automatic] extract coefficients used in the inverse transform - By default, coefficients are returned as a list of rules {wind1->coef1,wind2->coef2,…}.
- dwd[…,{form1,form2,…}] can be used to control the output form. Possible formi include:
-
"Rules" rules {wind1->…} "Values" coefficients only "Inverse" inverse transform individual coefficients "ListPlot" simple list plots for 1D coefficients "MatrixPlot" simple matrix plots for 2D coefficients "Image" images for image coefficients "Sound" sound objects for sound coefficients "SampledSoundList" sampled sound objects for sound coefficients - Overall properties can be obtained from DiscreteWaveletData[…]["prop"].
- DiscreteWaveletData[…]["Properties"] gives a list of properties available for the DiscreteWaveletData object.
- Properties related to transform coefficients include:
-
"BasisIndex" wavelet indices used for inverse transform "Dimensions" give the dimensions of wavelet coefficient groups "EnergyFraction" fraction of energy in groups of coefficients "Padding" the padding used to transform data "Refinement" the number of refinement levels performed "Transform" type of wavelet transform {"TreeView",pos} tree view of decomposition, with pos as in TreePlot "Wavelet" wavelet family used "WaveletIndex" list of all wavelet indices windi - Properties related to input data include:
-
"DataDimensions" dimensions of original data "DataChannels" the number of channels of data "DataWrapper" wrapper function applied to data after reconstruction - Properties unique to packet transforms include:
-
"BestBasisBlockView" block grid view of best basis "BestBasisCostValues" cost value for each wavelet coefficient "BestBasisCostTable" formatted cost value table - Properties available for dwd from WaveletThreshold include:
-
"ThresholdValues" threshold values for each wavelet coefficient
"ThresholdTable" formatted threshold values
- The following options can be given:
-
Method Automatic method to use Padding "Periodic" how to extend data beyond boundaries SampleRate Automatic sample rate to use for sound data WorkingPrecision MachinePrecision precision to use in internal computations - The settings for Padding are the same as those available in ArrayPad.


Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Get DiscreteWaveletData from a wavelet transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ngro3j

The DiscreteWaveletData represents a tree of transform coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-4k7wse

Extract properties, including fraction of total energy in each coefficient:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ff5yaq

Use DiscreteWaveletData objects in other wavelet functions:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-nmt8l0

WaveletMatrixPlot[dwd] plots matrix wavelet coefficients in a hierarchical grid layout:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-21l62m

Compute the inverse wavelet transform of stationary wavelet transform coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dktatf

Scope (25)Survey of the scope of standard use cases
Basic Uses (8)
Get a DiscreteWaveletData from wavelet transforms such as DiscreteWaveletTransform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dua9ap

Show the computed wavelet coefficients in a tree layout:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bstvmp

Get the coefficient arrays as a list of rules:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dwznbn

InverseWaveletTransform operates on DiscreteWaveletData:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-3exuz

For orthogonal wavelets such as HaarWavelet[], the inverse transform is exact:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-kbjry7

Extract coefficients corresponding to a wavelet index specification:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-q1m6j

Coefficients are given as a list of rules:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-xstdo

Extract all coefficients corresponding to wavelet indexes of the form {0,_}:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-kdvwmd

Extract a list of the coefficient arrays instead of a list of rules:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fi53sf


https://wolfram.com/xid/0ixfzxjfk8fh8n2-bbagie

Extract properties of the wavelet transform data:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ca22gi

Discrete forward transform, number of refinement levels, and wavelet used:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bhkppp

Dimensions of each wavelet coefficient:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bysrmy


https://wolfram.com/xid/0ixfzxjfk8fh8n2-fcmoa

Use DiscreteWaveletData in other wavelet functions:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-5ve1p

https://wolfram.com/xid/0ixfzxjfk8fh8n2-x0a1p


https://wolfram.com/xid/0ixfzxjfk8fh8n2-zw6ko

Wavelet visualization functions:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-f7srhe

Transform DiscreteWaveletData using wavelet functions:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ccpsk

https://wolfram.com/xid/0ixfzxjfk8fh8n2-in57yu

Apply thresholding operation to coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-do6zrf

Apply an arbitrary function to each coefficient:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-c0frxo

Plot coefficients in each wavelet data object:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-f31e44

Construct a DiscreteWaveletData from a list of rules giving coefficient arrays:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-d7j35v

The result represents a tree of wavelet coefficients including the specified coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ei3p5y

The other coefficients are assumed to be zero:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-h2s7um

Construct a DiscreteWaveletData using a specified wavelet and forward transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-islkuu

The specified wavelet and forward transform are used in the inverse transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dgjcuc

Get Coefficients (7)
Find out which coefficients are available:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-cz6cl3


https://wolfram.com/xid/0ixfzxjfk8fh8n2-bzllae

Show all coefficients in a tree layout:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bd6bpg

Different wavelet index specifications to extract coefficient arrays from DiscreteWaveletData:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-iy60ll

Extract a single coefficient array:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-or3m

Coefficients corresponding to a list of indexes:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dqfk06

All coefficients whose wavelet index matches a pattern:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fcyaju

A list of indexes and patterns:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-lqfcxp

Coefficients used by default in the inverse wavelet transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-k8olxz


https://wolfram.com/xid/0ixfzxjfk8fh8n2-mi1wc

Get coefficient arrays in different forms:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-f4cpy


https://wolfram.com/xid/0ixfzxjfk8fh8n2-ctsim


https://wolfram.com/xid/0ixfzxjfk8fh8n2-fr7p9t

Get coefficients as small list plots:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-10jyz

Get inverse transform of each coefficient array:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-d3i65f


https://wolfram.com/xid/0ixfzxjfk8fh8n2-idete0

Get matrix wavelet coefficients as small matrix plots:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-b120x3


https://wolfram.com/xid/0ixfzxjfk8fh8n2-j1pbm5

Inverse transform of individual coefficients as small matrix plots:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-b3el86

Get image wavelet coefficients as Image objects with ImageAdjust applied by default:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-xndhf


https://wolfram.com/xid/0ixfzxjfk8fh8n2-d0ftd

Get images without color levels adjusted:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-b7r9gb

By default, image wavelet coefficients are given as arrays of pixel values for each color channel:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bf8m16


https://wolfram.com/xid/0ixfzxjfk8fh8n2-vw4rx

Get audio wavelet coefficients as Audio objects:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-b42v8


https://wolfram.com/xid/0ixfzxjfk8fh8n2-nseizy

Inverse transform of an individual coefficient as an Audio object:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-b815mo

Get sound wavelet coefficients as Sound objects:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-c5i7eb


https://wolfram.com/xid/0ixfzxjfk8fh8n2-efuxli

Inverse transform of individual coefficients as Sound objects:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-lrlgkr

Set Coefficients (6)
Construct a DiscreteWaveletData for List input:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ucud2p


https://wolfram.com/xid/0ixfzxjfk8fh8n2-1v1oqv

For List coefficients, input a list of rules wrules of the type {wind1->coef1,…}:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-lwd6yz

Perform an InverseWaveletTransform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-nv7202

Image input:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-gzwu9f


https://wolfram.com/xid/0ixfzxjfk8fh8n2-if2b33

For Image coefficients, input a list of rules irules of the type {wind1->icoef1,…}:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-foqhyb

Perform an InverseWaveletTransform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ocw19v

Sound input:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-03dvgu


https://wolfram.com/xid/0ixfzxjfk8fh8n2-jod9ca


https://wolfram.com/xid/0ixfzxjfk8fh8n2-gevv9q
For Sound coefficients, input a list of rules srules of the type {wind1->scoef1,…}:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ht6sq4

Perform an InverseWaveletTransform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-tdousc

By default, parameter wavelet transform wtrans is computed automatically:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ttyarm


https://wolfram.com/xid/0ixfzxjfk8fh8n2-29z9g1

Specify parameter wavelet transform wtrans:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-uwz1vm


https://wolfram.com/xid/0ixfzxjfk8fh8n2-0q1566

By default, data dimensions {d1,…} are computed automatically:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-l6et16


https://wolfram.com/xid/0ixfzxjfk8fh8n2-pxabo7


https://wolfram.com/xid/0ixfzxjfk8fh8n2-tqpdgp

Perform simple edge detection:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-new4jb


https://wolfram.com/xid/0ixfzxjfk8fh8n2-2i5y6u

Properties (4)
Get properties of the wavelet transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-cwo7hg

Forward transform, wavelet, and padding method used:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dvucjy

Number of levels of refinement, corresponding to longest wavelet index:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ew4hlg

Properties of wavelet coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-h530x2

Wavelet indexes for all available coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-hm2to2

Tree view of all coefficients with different layouts:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-4gkxs

Dimensions of each coefficient array as a list of rules:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-krkjr9

Properties related to wavelet basis:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-b2qkf8


https://wolfram.com/xid/0ixfzxjfk8fh8n2-eb5099

Show wavelet basis highlighted in a tree view or block grid of all coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-g69er

Distribution of signal energy among basis coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-eivna

Cost values of each coefficient array for bases computed by WaveletBestBasis:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ekgh6q

Properties related to input data:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-g77h01

https://wolfram.com/xid/0ixfzxjfk8fh8n2-btkqm6

Data dimensions and number of audio or color channels:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-2b963

Wrapper function that is automatically applied to the result of an inverse transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-e509ba


https://wolfram.com/xid/0ixfzxjfk8fh8n2-ko26av

Options (7)Common values & functionality for each option
Method (1)
The settings for Method are the same as the methods for wavelet transforms:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-tc1lp2

Generate DiscreteWaveletData to perform "IntegerLifting":

https://wolfram.com/xid/0ixfzxjfk8fh8n2-sk3nxr


https://wolfram.com/xid/0ixfzxjfk8fh8n2-yt6n1g

Padding (2)
The settings for Padding are the same as the methods for ArrayPad, including "Periodic":

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dehf7e


https://wolfram.com/xid/0ixfzxjfk8fh8n2-qpkfr


https://wolfram.com/xid/0ixfzxjfk8fh8n2-ldsb8a


https://wolfram.com/xid/0ixfzxjfk8fh8n2-sme52


https://wolfram.com/xid/0ixfzxjfk8fh8n2-ntyqgp


https://wolfram.com/xid/0ixfzxjfk8fh8n2-pojqqw


https://wolfram.com/xid/0ixfzxjfk8fh8n2-bsohej

By default, Padding->"Periodic" option is used:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-5tzzf7

SampleRate (1)
For Sound input, SampleRate is automatically computed:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-xc74fv


https://wolfram.com/xid/0ixfzxjfk8fh8n2-u0mal1
By default SampleRate is extracted from the first coefficient rule:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-vh5x4x

https://wolfram.com/xid/0ixfzxjfk8fh8n2-45juhj


https://wolfram.com/xid/0ixfzxjfk8fh8n2-8fcs5p

Specify SampleRate explicitly:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-5n0c5k

WorkingPrecision (3)
By default, WorkingPrecision->MachinePrecision is used:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fvcmsi


https://wolfram.com/xid/0ixfzxjfk8fh8n2-qlff3u


https://wolfram.com/xid/0ixfzxjfk8fh8n2-7qfsoe

Use higher-precision computation:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-6lkrhl

With numbers close to zero, accuracy is the better indicator of the number of correct digits:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-cqyqyd

Use WorkingPrecision->∞ for exact computation:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-m5fvtb

https://wolfram.com/xid/0ixfzxjfk8fh8n2-n6h6y1

https://wolfram.com/xid/0ixfzxjfk8fh8n2-5ais8y


https://wolfram.com/xid/0ixfzxjfk8fh8n2-136mk3

https://wolfram.com/xid/0ixfzxjfk8fh8n2-4vdn92

Applications (3)Sample problems that can be solved with this function
Perform simple lossless data compression:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fznl6r

https://wolfram.com/xid/0ixfzxjfk8fh8n2-oaq5i3


https://wolfram.com/xid/0ixfzxjfk8fh8n2-xhbvpg

Extract wavelet coefficients used for reconstruction:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-frfgdg
Compare ByteCount for data and its corresponding wavelet coefficients wcoeff:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-453i24

https://wolfram.com/xid/0ixfzxjfk8fh8n2-1b2n8y

Reconstruct original data from compressed wavelet coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-0kxmv7


https://wolfram.com/xid/0ixfzxjfk8fh8n2-c14zq1

Compute scaling function by setting a UnitVector as a lowpass coefficient at refinement level
:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-5rxdzs

https://wolfram.com/xid/0ixfzxjfk8fh8n2-8l0fx3

Perform an InverseWaveletTransform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-4dktqq
Compare with the computed scaling function:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-hh9jci

Compute wavelet function by setting a UnitVector as a highpass coefficient at refinement level
:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-632mbc

https://wolfram.com/xid/0ixfzxjfk8fh8n2-7nkgui

Perform an InverseWaveletTransform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-kiybdg
Compare with the computed scaling function:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-n584i0

Properties & Relations (4)Properties of the function, and connections to other functions
DiscreteWaveletData represents a tree of discrete transform coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-zzvt6


https://wolfram.com/xid/0ixfzxjfk8fh8n2-jalso3

ContinuousWaveletData represents continuous transform coefficients at a set of scales:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fpkibb


https://wolfram.com/xid/0ixfzxjfk8fh8n2-ohmn9

Reconstruct a DiscreteWaveletData from its coefficients and properties:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bfsdx

Specify the coefficients, the wavelet and forward transform used, and the data dimensions:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-gd9q04

The forward transform and data dimensions can often be determined automatically:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-dbr8jk


https://wolfram.com/xid/0ixfzxjfk8fh8n2-e5dvb8

Equivalent ways to get all coefficients as a list of rules:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-gja6x7

Use Normal:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-kygfk

Explicitly extract All coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-e6kezw

Specify the pattern Blank[] (_), which matches any wavelet index:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-bhh5s

Equivalent ways to get only coefficient arrays corresponding to a wavelet index specification:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-i1xfk7

Apply Last to each rule returned by dwd[wind]:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-by6nzu

Use Part

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fbkorx

Explicitly get only coefficient values:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-fgn9vv

Possible Issues (2)Common pitfalls and unexpected behavior
Best basis cost values are only available for DiscreteWaveletData from WaveletBestBasis:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ezwkcn


https://wolfram.com/xid/0ixfzxjfk8fh8n2-hmpbw

Compute a best basis representation first:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-j3klm6


https://wolfram.com/xid/0ixfzxjfk8fh8n2-j6s02w

More than one forward transform may be consistent with the specified coefficients:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-7f83z

DiscreteWaveletData chooses one consistent forward transform to assume:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-ebaefq

Explicitly specify the forward transform:

https://wolfram.com/xid/0ixfzxjfk8fh8n2-eb6rn9


https://wolfram.com/xid/0ixfzxjfk8fh8n2-c73v2q

Wolfram Research (2010), DiscreteWaveletData, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteWaveletData.html.
Text
Wolfram Research (2010), DiscreteWaveletData, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteWaveletData.html.
Wolfram Research (2010), DiscreteWaveletData, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteWaveletData.html.
CMS
Wolfram Language. 2010. "DiscreteWaveletData." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteWaveletData.html.
Wolfram Language. 2010. "DiscreteWaveletData." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteWaveletData.html.
APA
Wolfram Language. (2010). DiscreteWaveletData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiscreteWaveletData.html
Wolfram Language. (2010). DiscreteWaveletData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiscreteWaveletData.html
BibTeX
@misc{reference.wolfram_2025_discretewaveletdata, author="Wolfram Research", title="{DiscreteWaveletData}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/DiscreteWaveletData.html}", note=[Accessed: 01-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_discretewaveletdata, organization={Wolfram Research}, title={DiscreteWaveletData}, year={2010}, url={https://reference.wolfram.com/language/ref/DiscreteWaveletData.html}, note=[Accessed: 01-April-2025
]}