HalfPlane
✖
HalfPlane
Details

- HalfPlane is also known as half-space in 2D.
- HalfPlane can be used as a geometric region and graphics primitive.
- HalfPlane represents a planar region
or
.
- HalfPlane can be used in Graphics and Graphics3D.
- HalfPlane will be clipped by PlotRange when rendering.
- In graphics, the points p, pi and vector v can be Scaled and Dynamic expressions.
- Graphics rendering is affected by directives such as FaceForm, EdgeForm, Opacity, and color.
- FaceForm[front,back] can be used to specify different styles for the front and back in 3D. The front is defined by the right-hand rule and the direction from {p1,w,p2} or {p,v,w}.

Examples
open allclose allBasic Examples (4)Summary of the most common use cases
A HalfPlane in 2D:

https://wolfram.com/xid/0en1pqlz3-e7un64


https://wolfram.com/xid/0en1pqlz3-e7ewm

Different styles applied to a half-plane:

https://wolfram.com/xid/0en1pqlz3-ha30gf

https://wolfram.com/xid/0en1pqlz3-db0xcy

The Area of a half-plane is infinite:

https://wolfram.com/xid/0en1pqlz3-bfbp1

Determine if points belong to a given half-plane:

https://wolfram.com/xid/0en1pqlz3-jndyz9

https://wolfram.com/xid/0en1pqlz3-dgs4g1

Scope (18)Survey of the scope of standard use cases
Graphics (8)
Specification (3)
Define the upper half-plane using a point and two vectors:

https://wolfram.com/xid/0en1pqlz3-b5woeh

https://wolfram.com/xid/0en1pqlz3-vjyj3

Or using two points and a single vector:

https://wolfram.com/xid/0en1pqlz3-b49gsf

https://wolfram.com/xid/0en1pqlz3-g94d9

Define a half-plane in 3D using a point and two vectors:

https://wolfram.com/xid/0en1pqlz3-eemyer

https://wolfram.com/xid/0en1pqlz3-cokj9k

Or using two points and a single vector:

https://wolfram.com/xid/0en1pqlz3-bmzjqp

https://wolfram.com/xid/0en1pqlz3-e0zase

A half-plane with symbolic parameters:

https://wolfram.com/xid/0en1pqlz3-nlkqsx

Styling (2)
Color directives specify the color of the half-plane:

https://wolfram.com/xid/0en1pqlz3-i29k3n


https://wolfram.com/xid/0en1pqlz3-e04uby

FaceForm and EdgeForm can be used to specify the styles of the faces and edges:

https://wolfram.com/xid/0en1pqlz3-h1pi0h


https://wolfram.com/xid/0en1pqlz3-4hfyj

Coordinates (3)
Specify coordinates by fractions of the plot range:

https://wolfram.com/xid/0en1pqlz3-e3u77e


https://wolfram.com/xid/0en1pqlz3-yimo99

Specify scaled offsets from the ordinary coordinates in 2D:

https://wolfram.com/xid/0en1pqlz3-f8i2ip

Points and vectors can be Dynamic:

https://wolfram.com/xid/0en1pqlz3-9cjx7z

Regions (10)
Embedding dimension is the dimension of the coordinates:

https://wolfram.com/xid/0en1pqlz3-11a0x6


https://wolfram.com/xid/0en1pqlz3-hn6tsf

Geometric dimension is the dimension of the region itself:

https://wolfram.com/xid/0en1pqlz3-mji3x4


https://wolfram.com/xid/0en1pqlz3-qtw6nw

https://wolfram.com/xid/0en1pqlz3-l0qk5q

Get conditions for membership:

https://wolfram.com/xid/0en1pqlz3-pvff7t

Half-planes have infinite measure and undefined centroid:

https://wolfram.com/xid/0en1pqlz3-zsl8fn

https://wolfram.com/xid/0en1pqlz3-0x62cm


https://wolfram.com/xid/0en1pqlz3-c4n99m

Distance from a point to a half-plane:

https://wolfram.com/xid/0en1pqlz3-beic9u

https://wolfram.com/xid/0en1pqlz3-4wmd2m


https://wolfram.com/xid/0en1pqlz3-7xgx3

Signed distance to a half-plane:

https://wolfram.com/xid/0en1pqlz3-b7ypyd

https://wolfram.com/xid/0en1pqlz3-z3n36v


https://wolfram.com/xid/0en1pqlz3-vddrjy


https://wolfram.com/xid/0en1pqlz3-8ujy2g

https://wolfram.com/xid/0en1pqlz3-k26agk


https://wolfram.com/xid/0en1pqlz3-7ej43v

https://wolfram.com/xid/0en1pqlz3-n8fd3


https://wolfram.com/xid/0en1pqlz3-2qbzkc

https://wolfram.com/xid/0en1pqlz3-pjepv6


https://wolfram.com/xid/0en1pqlz3-o5laas


https://wolfram.com/xid/0en1pqlz3-udk0sy

https://wolfram.com/xid/0en1pqlz3-f4zxih


https://wolfram.com/xid/0en1pqlz3-0156ri

https://wolfram.com/xid/0en1pqlz3-5qcc45

Solve equations over a half-plane:

https://wolfram.com/xid/0en1pqlz3-x3q5bp

https://wolfram.com/xid/0en1pqlz3-6jvs5i

Applications (3)Sample problems that can be solved with this function
Define regions that occupy two adjacent quadrants:

https://wolfram.com/xid/0en1pqlz3-67fjfp

https://wolfram.com/xid/0en1pqlz3-p5o7j0

Partition space in a BubbleChart:

https://wolfram.com/xid/0en1pqlz3-1fm7gd

https://wolfram.com/xid/0en1pqlz3-euq1kf

https://wolfram.com/xid/0en1pqlz3-r8p9a

Find the intersection points of a sphere, a half-plane, and a surface defined by :

https://wolfram.com/xid/0en1pqlz3-qlnp21

https://wolfram.com/xid/0en1pqlz3-h539x7

Visualize intersection points:

https://wolfram.com/xid/0en1pqlz3-ozql0o

https://wolfram.com/xid/0en1pqlz3-0jr7hl

https://wolfram.com/xid/0en1pqlz3-0hkhnu

https://wolfram.com/xid/0en1pqlz3-lnw1r2

https://wolfram.com/xid/0en1pqlz3-3hs7ij

Properties & Relations (4)Properties of the function, and connections to other functions
Any HalfPlane can be represented by ConicHullRegion:

https://wolfram.com/xid/0en1pqlz3-d88ckb

https://wolfram.com/xid/0en1pqlz3-f123x

https://wolfram.com/xid/0en1pqlz3-k6jos

ImplicitRegion can be used to represent any HalfPlane:

https://wolfram.com/xid/0en1pqlz3-eon2fb

https://wolfram.com/xid/0en1pqlz3-bp9ufs

https://wolfram.com/xid/0en1pqlz3-dr0t97

ParametricRegion can be used to represent any HalfPlane:

https://wolfram.com/xid/0en1pqlz3-fiy33a

https://wolfram.com/xid/0en1pqlz3-gb7v1

https://wolfram.com/xid/0en1pqlz3-dmt09h

Any InfinitePlane can be represented as a union of two half-planes:

https://wolfram.com/xid/0en1pqlz3-3addd

https://wolfram.com/xid/0en1pqlz3-d9shn8

https://wolfram.com/xid/0en1pqlz3-jth8x6

Wolfram Research (2014), HalfPlane, Wolfram Language function, https://reference.wolfram.com/language/ref/HalfPlane.html (updated 2016).
Text
Wolfram Research (2014), HalfPlane, Wolfram Language function, https://reference.wolfram.com/language/ref/HalfPlane.html (updated 2016).
Wolfram Research (2014), HalfPlane, Wolfram Language function, https://reference.wolfram.com/language/ref/HalfPlane.html (updated 2016).
CMS
Wolfram Language. 2014. "HalfPlane." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/HalfPlane.html.
Wolfram Language. 2014. "HalfPlane." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/HalfPlane.html.
APA
Wolfram Language. (2014). HalfPlane. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HalfPlane.html
Wolfram Language. (2014). HalfPlane. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HalfPlane.html
BibTeX
@misc{reference.wolfram_2025_halfplane, author="Wolfram Research", title="{HalfPlane}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/HalfPlane.html}", note=[Accessed: 01-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_halfplane, organization={Wolfram Research}, title={HalfPlane}, year={2016}, url={https://reference.wolfram.com/language/ref/HalfPlane.html}, note=[Accessed: 01-April-2025
]}