InfinitePlane
✖
InfinitePlane
represents the plane passing through the point p in the directions v1 and v2.
Details

- InfinitePlane is also known as plane or hyperplane.
- InfinitePlane can be used as a geometric region and graphics primitive.
- InfinitePlane represents a plane
or
.
- Hyperplane[n,p] is an alternative representation using a normal n in 3D.
- InfinitePlane can be used in Graphics and Graphics3D.
- InfinitePlane will be clipped by PlotRange when rendering.
- In graphics, the points p, pi and vector v can be Dynamic expressions.
- Graphics rendering is affected by directives such as FaceForm, Opacity, and color.
- FaceForm[front,back] can be used to specify different styles for the front and back in 3D. The front is defined by the right-hand rule and the direction of the points pi or the vectors vi.
- InfinitePlane can be used with functions such as RegionMeasure, RegionCentroid, etc.

Examples
open allclose allBasic Examples (3)Summary of the most common use cases
An InfinitePlane in 3D:

https://wolfram.com/xid/0d6gir0xq7-c6r2pf

Different styles applied to an infinite plane:

https://wolfram.com/xid/0d6gir0xq7-ft3i2t

https://wolfram.com/xid/0d6gir0xq7-p3gug

Determine if points belong to a given infinite plane:

https://wolfram.com/xid/0d6gir0xq7-pxgsel

https://wolfram.com/xid/0d6gir0xq7-bpzg0x

Scope (17)Survey of the scope of standard use cases
Graphics (7)
Specification (2)
Define an infinite plane in 3D using three points:

https://wolfram.com/xid/0d6gir0xq7-e7r7wx

https://wolfram.com/xid/0d6gir0xq7-gjh11t

Define the same plane using a single point and two tangent vectors:

https://wolfram.com/xid/0d6gir0xq7-71xkk

https://wolfram.com/xid/0d6gir0xq7-gdpbsj

An infinite plane varying in direction:

https://wolfram.com/xid/0d6gir0xq7-f4rlws

Styling (2)
Coordinates (3)
Specify coordinates by fractions of the plot range:

https://wolfram.com/xid/0d6gir0xq7-e3u77e

Specify scaled offsets from the ordinary coordinates:

https://wolfram.com/xid/0d6gir0xq7-f8i2ip

Points and vectors can be Dynamic:

https://wolfram.com/xid/0d6gir0xq7-9cjx7z

Regions (10)
Embedding dimension is the dimension of the coordinates:

https://wolfram.com/xid/0d6gir0xq7-txg5x2


https://wolfram.com/xid/0d6gir0xq7-5q2jur

Geometric dimension is the dimension of the region itself:

https://wolfram.com/xid/0d6gir0xq7-bin9zy


https://wolfram.com/xid/0d6gir0xq7-xze387


https://wolfram.com/xid/0d6gir0xq7-ddq0ru

https://wolfram.com/xid/0d6gir0xq7-cjj0wh

Get the conditions for membership:

https://wolfram.com/xid/0d6gir0xq7-bb4qcz

An infinite plane has infinite measure and undefined centroid:

https://wolfram.com/xid/0d6gir0xq7-lu8hn1

https://wolfram.com/xid/0d6gir0xq7-jkby32


https://wolfram.com/xid/0d6gir0xq7-ehj3hm


https://wolfram.com/xid/0d6gir0xq7-3uqq9s

https://wolfram.com/xid/0d6gir0xq7-pii3zc


https://wolfram.com/xid/0d6gir0xq7-5s0v3r


https://wolfram.com/xid/0d6gir0xq7-pfynp3

https://wolfram.com/xid/0d6gir0xq7-kjql3z


https://wolfram.com/xid/0d6gir0xq7-36yfy7

https://wolfram.com/xid/0d6gir0xq7-hg4qin

An infinite plane is unbounded:

https://wolfram.com/xid/0d6gir0xq7-j36bgo

https://wolfram.com/xid/0d6gir0xq7-eqof9h


https://wolfram.com/xid/0d6gir0xq7-ky39j1

Integrate over an infinite plane:

https://wolfram.com/xid/0d6gir0xq7-0ldrux

https://wolfram.com/xid/0d6gir0xq7-gtyh05

Optimize over an infinite plane:

https://wolfram.com/xid/0d6gir0xq7-6j7164

https://wolfram.com/xid/0d6gir0xq7-q29ws0

Solve equations over an infinite plane:

https://wolfram.com/xid/0d6gir0xq7-xja6yq

https://wolfram.com/xid/0d6gir0xq7-1ok044

Applications (7)Sample problems that can be solved with this function
Find the plane in which a triangle is embedded:

https://wolfram.com/xid/0d6gir0xq7-qorsx0
InfinitePlane can use the same parametrization as Triangle:

https://wolfram.com/xid/0d6gir0xq7-ekrm22

https://wolfram.com/xid/0d6gir0xq7-di9hob

Find the plane in which a polygon is embedded:

https://wolfram.com/xid/0d6gir0xq7-dtm6ls

https://wolfram.com/xid/0d6gir0xq7-1iwvv
To find the plane, take the first three points (or any three points not on a line):

https://wolfram.com/xid/0d6gir0xq7-dcknpw

https://wolfram.com/xid/0d6gir0xq7-hwu8us

The tangent plane to a parametric surface f[u,v] is given by InfinitePlane[f[u,v],{∂uf[u,v],∂vf[u,v]}]. Find the tangent plane to the parametric surface :

https://wolfram.com/xid/0d6gir0xq7-6naqy

https://wolfram.com/xid/0d6gir0xq7-b7bna3

https://wolfram.com/xid/0d6gir0xq7-fccxvn

Find the tangent plane to the surface :

https://wolfram.com/xid/0d6gir0xq7-bc3htq

https://wolfram.com/xid/0d6gir0xq7-d2oryg

https://wolfram.com/xid/0d6gir0xq7-eelf0

Find the intersection points of a sphere, a plane, and a surface defined by :

https://wolfram.com/xid/0d6gir0xq7-gnofuq

https://wolfram.com/xid/0d6gir0xq7-h539x7

Visualize intersection points:

https://wolfram.com/xid/0d6gir0xq7-ozql0o

https://wolfram.com/xid/0d6gir0xq7-0jr7hl

https://wolfram.com/xid/0d6gir0xq7-0hkhnu

https://wolfram.com/xid/0d6gir0xq7-lnw1r2

https://wolfram.com/xid/0d6gir0xq7-3hs7ij

Partition space in a BubbleChart:

https://wolfram.com/xid/0d6gir0xq7-1fm7gd

https://wolfram.com/xid/0d6gir0xq7-6f1j4w

https://wolfram.com/xid/0d6gir0xq7-p04vrs


https://wolfram.com/xid/0d6gir0xq7-4dos5m

https://wolfram.com/xid/0d6gir0xq7-5iqivl
Define a ReflectionTransform using a point on the plane and its normal vector:

https://wolfram.com/xid/0d6gir0xq7-2a3gms

https://wolfram.com/xid/0d6gir0xq7-b8wgcq
Visualize the reflection of a unit cube about the plane:

https://wolfram.com/xid/0d6gir0xq7-gy2hm0

https://wolfram.com/xid/0d6gir0xq7-idy2gi

Properties & Relations (6)Properties of the function, and connections to other functions
InfinitePlane[{p1,p2,p3}] is equivalent to InfinitePlane[p1,{p2-p1,p3-p1}]:

https://wolfram.com/xid/0d6gir0xq7-0thsh1

https://wolfram.com/xid/0d6gir0xq7-2n7iy4

https://wolfram.com/xid/0d6gir0xq7-rnlbun

InfinitePlane[p,{v1,v2}] is equivalent to Hyperplane[Cross[v1,v2],p] in 3D:

https://wolfram.com/xid/0d6gir0xq7-drk8j3

https://wolfram.com/xid/0d6gir0xq7-bd4z4o

https://wolfram.com/xid/0d6gir0xq7-bvzoek

ParametricRegion can represent any InfinitePlane:

https://wolfram.com/xid/0d6gir0xq7-do6kf2

https://wolfram.com/xid/0d6gir0xq7-b3dt7k

https://wolfram.com/xid/0d6gir0xq7-4mog7n

ImplicitRegion can represent any InfinitePlane:

https://wolfram.com/xid/0d6gir0xq7-foufor

https://wolfram.com/xid/0d6gir0xq7-qanq37

https://wolfram.com/xid/0d6gir0xq7-psdt60

InfinitePlane is a special case of ConicHullRegion:

https://wolfram.com/xid/0d6gir0xq7-dbhzyr

https://wolfram.com/xid/0d6gir0xq7-1dyyl4

Any InfinitePlane can be represented as a union of two HalfPlane regions:

https://wolfram.com/xid/0d6gir0xq7-k0uwjw

https://wolfram.com/xid/0d6gir0xq7-ysphzg

https://wolfram.com/xid/0d6gir0xq7-zcbprr

https://wolfram.com/xid/0d6gir0xq7-qdp25v

Wolfram Research (2014), InfinitePlane, Wolfram Language function, https://reference.wolfram.com/language/ref/InfinitePlane.html (updated 2016).
Text
Wolfram Research (2014), InfinitePlane, Wolfram Language function, https://reference.wolfram.com/language/ref/InfinitePlane.html (updated 2016).
Wolfram Research (2014), InfinitePlane, Wolfram Language function, https://reference.wolfram.com/language/ref/InfinitePlane.html (updated 2016).
CMS
Wolfram Language. 2014. "InfinitePlane." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/InfinitePlane.html.
Wolfram Language. 2014. "InfinitePlane." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/InfinitePlane.html.
APA
Wolfram Language. (2014). InfinitePlane. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InfinitePlane.html
Wolfram Language. (2014). InfinitePlane. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InfinitePlane.html
BibTeX
@misc{reference.wolfram_2025_infiniteplane, author="Wolfram Research", title="{InfinitePlane}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/InfinitePlane.html}", note=[Accessed: 15-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_infiniteplane, organization={Wolfram Research}, title={InfinitePlane}, year={2016}, url={https://reference.wolfram.com/language/ref/InfinitePlane.html}, note=[Accessed: 15-May-2025
]}