InterquartileRange

InterquartileRange[data]

gives the difference between the upper and lower quartiles for the elements in data.

InterquartileRange[data,{{a,b},{c,d}}]

uses the quantile definition specified by parameters a, b, c, d.

InterquartileRange[dist]

gives the difference between the upper and lower quartiles for the distribution dist.

Details

Examples

open allclose all

Basic Examples  (2)

Interquartile range for a list of exact numbers:

Interquartile range of a parametric distribution:

Scope  (18)

Basic Uses  (8)

Exact input yields exact output:

Approximate input yields approximate output:

Compute results using other parametrizations:

Find the interquartile range for WeightedData:

Find the interquartile range for EventData:

Find the interquartile range for TemporalData:

Find the interquartile range of TimeSeries:

The interquartile range depends only on the values:

Find the interquartile range for data involving quantities:

Array Data  (5)

InterquartileRange for a matrix gives columnwise ranges:

Interquartile range for a tensor works across the first index:

Works with large arrays:

When the input is an Association, InterquartileRange works on its values:

SparseArray data can be used just like dense arrays:

Find interquartile range of a QuantityArray:

Image and Audio Data  (2)

Channelwise interquartile range values of an RGB image:

Interquartile range intensity value of a grayscale image:

Interquartile range amplitude of all channels:

Distributions and Processes  (3)

Find the interquartile range for a parametric distribution:

Interquartile range for a derived distribution:

Data distribution:

Interquartile range for a time slice of a random process:

Applications  (6)

InterquartileRange indicates the spread of values:

InterquartileRange can be used as a check for agreement between data and a distribution:

Generate a random sample:

Find the interquartile range of the data:

Compare with the interquartile range of the distribution:

Identify periods of high volatility in stock data using an annual moving interquartile range:

Find the interquartile ranges for the girth, height, and volume of timber, respectively, in 31 felled black cherry trees:

Compute InterquartileRange for slices of a collection of paths of a random process:

Choose a few slice times:

Plot of the interquartile range for the selected times:

Find the interquartile range of the heights for the children in a class:

Plot the interquartile range respective of the median:

Properties & Relations  (4)

InterquartileRange is the difference of linearly interpolated Quantile values:

InterquartileRange is the difference between the first and third quartiles:

QuartileDeviation is half the interquartile range:

BoxWhiskerChart shows the interquartile range for data:

Possible Issues  (1)

InterquartileRange requires numeric values in data:

The symbolic closed form may exist for some distributions:

Neat Examples  (1)

The distribution of InterquartileRange estimates for 20, 100, and 300 samples:

Wolfram Research (2007), InterquartileRange, Wolfram Language function, https://reference.wolfram.com/language/ref/InterquartileRange.html (updated 2023).

Text

Wolfram Research (2007), InterquartileRange, Wolfram Language function, https://reference.wolfram.com/language/ref/InterquartileRange.html (updated 2023).

CMS

Wolfram Language. 2007. "InterquartileRange." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/InterquartileRange.html.

APA

Wolfram Language. (2007). InterquartileRange. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InterquartileRange.html

BibTeX

@misc{reference.wolfram_2023_interquartilerange, author="Wolfram Research", title="{InterquartileRange}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/InterquartileRange.html}", note=[Accessed: 22-April-2024 ]}

BibLaTeX

@online{reference.wolfram_2023_interquartilerange, organization={Wolfram Research}, title={InterquartileRange}, year={2023}, url={https://reference.wolfram.com/language/ref/InterquartileRange.html}, note=[Accessed: 22-April-2024 ]}