PointCountDistribution
✖
PointCountDistribution
更多信息

- PointCountDistribution 也称为计数分布.
- PointCountDistribution 是点过程 pproc 导致的点布局中点数的分布.
- PointCountDistribution 通常用于估计观测区域中点的总数,如森林中树木的数量、样本中的细胞的数量或表面上瑕疵的数量.
- 对于点过程 pproc,全维区域 reg 中的点数是一个随机变量,其分布由 PointCountDistribution[pproc,reg] 表示.
- PointCountDistribution[pproc,reg] 的均值是区域 reg 中点过程 pproc 的均值.
- 观察区域 regi 和 reg 应是全维的和有界的,SpatialObservationRegionQ 的结果应为真,特殊情况下可用参数定义.
- 可能的情况下,PointCountDistribution 会简化为已知的特殊分布.
- PointCountDistribution 可与 Mean、CDF 和 RandomVariate 等函数一起使用.

范例
打开所有单元关闭所有单元基本范例 (3)常见实例总结
单位圆盘上的 PoissonPointProcess 的点数的分布:

https://wolfram.com/xid/0tqan9il7it5cq-damon


https://wolfram.com/xid/0tqan9il7it5cq-bxjwua

单位球体内的 HardcorePointProcess 的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-xcp84m


https://wolfram.com/xid/0tqan9il7it5cq-ryl4u5


https://wolfram.com/xid/0tqan9il7it5cq-uz82eg

https://wolfram.com/xid/0tqan9il7it5cq-9nchcs

GeoDisk 的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-g9if38

https://wolfram.com/xid/0tqan9il7it5cq-dzttaf

范围 (4)标准用法实例范围调查
单位圆盘上的 BinomialPointProcess 的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-zbxj8m

https://wolfram.com/xid/0tqan9il7it5cq-bj43m1


https://wolfram.com/xid/0tqan9il7it5cq-n43mm7

https://wolfram.com/xid/0tqan9il7it5cq-s2mit0


https://wolfram.com/xid/0tqan9il7it5cq-fo0k75


https://wolfram.com/xid/0tqan9il7it5cq-i39qc

单位圆盘上的 InhomogeneousPoissonPointProcess 的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-ee869z

https://wolfram.com/xid/0tqan9il7it5cq-x4d6mh


https://wolfram.com/xid/0tqan9il7it5cq-i84kfo


https://wolfram.com/xid/0tqan9il7it5cq-g1dbu8


https://wolfram.com/xid/0tqan9il7it5cq-qboj5a


https://wolfram.com/xid/0tqan9il7it5cq-ctagj4


https://wolfram.com/xid/0tqan9il7it5cq-diy1yr


https://wolfram.com/xid/0tqan9il7it5cq-52n4h7

Neyman–Scott 型的聚类过程的 PointCountDistribution 是 CompoundPoissonDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-ymwaha

https://wolfram.com/xid/0tqan9il7it5cq-bppcj


https://wolfram.com/xid/0tqan9il7it5cq-e5287l


https://wolfram.com/xid/0tqan9il7it5cq-76m9ho


https://wolfram.com/xid/0tqan9il7it5cq-fbmba5

通常,Neyman–Scott 点过程的点数分布不取决于聚类点的空间分布:

https://wolfram.com/xid/0tqan9il7it5cq-va082n


https://wolfram.com/xid/0tqan9il7it5cq-ybc0pf

在没有解析形式的 PointCountDistribution 的情况下计算概率和期望:

https://wolfram.com/xid/0tqan9il7it5cq-ppr43z

https://wolfram.com/xid/0tqan9il7it5cq-mai9ud


https://wolfram.com/xid/0tqan9il7it5cq-896zcn

应用 (5)用该函数可以解决的问题范例

https://wolfram.com/xid/0tqan9il7it5cq-3qn1r3

https://wolfram.com/xid/0tqan9il7it5cq-bnjbuk

假设胶合板上平均每 50 平方英尺出现一个瑕疵. 模拟每平方英尺发现瑕疵的过程:

https://wolfram.com/xid/0tqan9il7it5cq-fz5csd


https://wolfram.com/xid/0tqan9il7it5cq-6ye4y3


https://wolfram.com/xid/0tqan9il7it5cq-fhz6iz


https://wolfram.com/xid/0tqan9il7it5cq-rm916e

https://wolfram.com/xid/0tqan9il7it5cq-0kvein


https://wolfram.com/xid/0tqan9il7it5cq-sknjp

对于面积为 7.54 cm 的圆镜,无瑕疵的概率为 0.91. 使用相同的抛光工艺,制造了另一个面积为 19.50 cm
的圆镜. 假设瑕疵是独立且随机分布的,求在较大的镜子上没有瑕疵的概率:

https://wolfram.com/xid/0tqan9il7it5cq-cewm1r

https://wolfram.com/xid/0tqan9il7it5cq-6w5afw

https://wolfram.com/xid/0tqan9il7it5cq-7q2fas


https://wolfram.com/xid/0tqan9il7it5cq-lf0rpd


https://wolfram.com/xid/0tqan9il7it5cq-wam2ku

https://wolfram.com/xid/0tqan9il7it5cq-vv4pdx


https://wolfram.com/xid/0tqan9il7it5cq-zt1f38

一个 LCD 显示器有 1920×1080 个像素. 如果有问题的像素少于或等于 15 个,则该显示器为合格品. 生产中像素出现故障的概率为 ,并且故障像素的位置是独立且随机的. 求合格显示器的比例:

https://wolfram.com/xid/0tqan9il7it5cq-s3tyax

https://wolfram.com/xid/0tqan9il7it5cq-x7g8uw

https://wolfram.com/xid/0tqan9il7it5cq-8caypb


https://wolfram.com/xid/0tqan9il7it5cq-2y2hva


https://wolfram.com/xid/0tqan9il7it5cq-rnl659


https://wolfram.com/xid/0tqan9il7it5cq-b339un

求生产合格率至少为 90% 的 4000×2000 像素显示器所要求的像素故障率:

https://wolfram.com/xid/0tqan9il7it5cq-gvrjx3

https://wolfram.com/xid/0tqan9il7it5cq-1zhlxu


https://wolfram.com/xid/0tqan9il7it5cq-m1rnsy


https://wolfram.com/xid/0tqan9il7it5cq-lkxmue


https://wolfram.com/xid/0tqan9il7it5cq-n5i27z



https://wolfram.com/xid/0tqan9il7it5cq-fakpmz


https://wolfram.com/xid/0tqan9il7it5cq-d67un9

https://wolfram.com/xid/0tqan9il7it5cq-co73u1


https://wolfram.com/xid/0tqan9il7it5cq-b75v9m

https://wolfram.com/xid/0tqan9il7it5cq-536xg

https://wolfram.com/xid/0tqan9il7it5cq-ckn23i


https://wolfram.com/xid/0tqan9il7it5cq-ublj80

https://wolfram.com/xid/0tqan9il7it5cq-dylh26



https://wolfram.com/xid/0tqan9il7it5cq-eri8la


https://wolfram.com/xid/0tqan9il7it5cq-44ct8


https://wolfram.com/xid/0tqan9il7it5cq-cjz7s

https://wolfram.com/xid/0tqan9il7it5cq-il8j46


https://wolfram.com/xid/0tqan9il7it5cq-bvruaj


https://wolfram.com/xid/0tqan9il7it5cq-hkm1cp


https://wolfram.com/xid/0tqan9il7it5cq-fpjlvp



https://wolfram.com/xid/0tqan9il7it5cq-fl1nwc

属性和关系 (4)函数的属性及与其他函数的关联
一对不相连区域上的 PointCountDistribution 是 ProductDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-0gzmoj

https://wolfram.com/xid/0tqan9il7it5cq-zkxjfp


https://wolfram.com/xid/0tqan9il7it5cq-e3lcqi
每个区域上的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-5oonba

区域列表上的多元 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-m347br

重叠区域上的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-t7rmnn

https://wolfram.com/xid/0tqan9il7it5cq-sdqcr0


https://wolfram.com/xid/0tqan9il7it5cq-q8eb74
每个区域上的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-xfnld4

区域列表上的多元 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-cxz4sn


https://wolfram.com/xid/0tqan9il7it5cq-klly0o

覆盖有 BinomialPointProcess 的区域上的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-uspmrn

https://wolfram.com/xid/0tqan9il7it5cq-zdyvdj

https://wolfram.com/xid/0tqan9il7it5cq-0hh6u9

https://wolfram.com/xid/0tqan9il7it5cq-kop1b4


https://wolfram.com/xid/0tqan9il7it5cq-i49zp

具有非数值参数的区域的 PointCountDistribution:

https://wolfram.com/xid/0tqan9il7it5cq-ocuawu

Wolfram Research (2020),PointCountDistribution,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PointCountDistribution.html.
文本
Wolfram Research (2020),PointCountDistribution,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PointCountDistribution.html.
Wolfram Research (2020),PointCountDistribution,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PointCountDistribution.html.
CMS
Wolfram 语言. 2020. "PointCountDistribution." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/PointCountDistribution.html.
Wolfram 语言. 2020. "PointCountDistribution." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/PointCountDistribution.html.
APA
Wolfram 语言. (2020). PointCountDistribution. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/PointCountDistribution.html 年
Wolfram 语言. (2020). PointCountDistribution. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/PointCountDistribution.html 年
BibTeX
@misc{reference.wolfram_2025_pointcountdistribution, author="Wolfram Research", title="{PointCountDistribution}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/PointCountDistribution.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_pointcountdistribution, organization={Wolfram Research}, title={PointCountDistribution}, year={2020}, url={https://reference.wolfram.com/language/ref/PointCountDistribution.html}, note=[Accessed: 04-April-2025
]}