EmptySpaceF
Details and Options




- EmptySpaceF is also known as spherical contact distribution function.
- The function
gives the probability of finding a point within distance
of an arbitrary location which is typically not a point of pdata.
-
- When comparing with a Poisson point process, the results are:
-
- The radius r can be a single value or a list of values. With no radius r specified, EmptySpaceF returns a PointStatisticFunction that can be used to evaluate the
function repeatedly.
- The point data pdata can have the following forms:
-
{p1,p2,…} points pi GeoPosition[…],GeoPositionXYZ[…],… geographic points SpatialPointData[…] spatial point collection {pts,reg} point collection pts and observation region reg - If the observation region reg is not given, a region is automatically computed using RipleyRassonRegion.
- The point process pproc can have the following forms:
-
proc a point process proc {proc,reg} a point process proc and observation region reg - The observation region reg should be parameter free and SpatialObservationRegionQ.
- The binned data bdata is from SpatialBinnedPointData and is treated as an InhomogeneousPoissonPointProcess with a piecewise constant intensify function.
- For pdata,
is computed by discretizing the observation region and assumes constant point intensity.
- For pproc,
is computed by using exact formulas or by simulation to generate point data.
- The following options can be given:
-
Method Automatic what methods to use SpatialBoundaryCorrection Automatic what boundary correction to use - The following settings can be used for SpatialBoundaryCorrection:
-
Automatic automatically determined boundary correction None no boundary correction "BorderMargin" use interior margin for observation region "Hanisch" drops points for which the distance to the nearest neighbor is greater than the distance to boundary "KaplanMeier" SurvivalDistribution method: the point distance to its nearest neighbor is censored by its distance to the region boundary "NelsonAalen" SurvivalDistribution method: the point distance to its nearest neighbor is censored by its distance to the region boundary - The setting Method->{"Discretization"->opts} allows for adjusting the discretization method in the estimation. Here opts can be any valid options for DiscretizeRegion.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Estimate the empty space function at a given distance:

https://wolfram.com/xid/0d6gcrzw5m-7xwnvr

https://wolfram.com/xid/0d6gcrzw5m-4wykf

Estimate the empty space function within a range of distances:

https://wolfram.com/xid/0d6gcrzw5m-ygbnac


https://wolfram.com/xid/0d6gcrzw5m-bmyu9a

https://wolfram.com/xid/0d6gcrzw5m-ee0oxv
Visualize the result with ListPlot:

https://wolfram.com/xid/0d6gcrzw5m-ef5jdl

Empty space function of a cluster point process:

https://wolfram.com/xid/0d6gcrzw5m-yksgj0

https://wolfram.com/xid/0d6gcrzw5m-daj61m

Scope (7)Survey of the scope of standard use cases
Point Data (4)
Estimate the empty space function for some data at distance 0.1:

https://wolfram.com/xid/0d6gcrzw5m-e2gx6r

https://wolfram.com/xid/0d6gcrzw5m-bf4bxp

Obtain empirical estimates of the empty space function for a list of given distances:

https://wolfram.com/xid/0d6gcrzw5m-kyzwq

Create a PointStatisticFunction for future use:

https://wolfram.com/xid/0d6gcrzw5m-js3gk8

https://wolfram.com/xid/0d6gcrzw5m-odkmbl

Compute a value at a given radius:

https://wolfram.com/xid/0d6gcrzw5m-vx5qgr

Estimate the empty space function without explicitly providing the observation region:

https://wolfram.com/xid/0d6gcrzw5m-f7t1ko

https://wolfram.com/xid/0d6gcrzw5m-7rwaj3

Observation region generated by Ripley–Rasson estimator:

https://wolfram.com/xid/0d6gcrzw5m-hc1hyh

Estimated function at distance 0.05:

https://wolfram.com/xid/0d6gcrzw5m-h12d14

Use EmptySpaceF with GeoPosition:

https://wolfram.com/xid/0d6gcrzw5m-1vo729


https://wolfram.com/xid/0d6gcrzw5m-xpkh6o

Plot the point statistics function:

https://wolfram.com/xid/0d6gcrzw5m-7m1ksc

Point Processes (3)
The empty space function for PoissonPointProcess has closed form:

https://wolfram.com/xid/0d6gcrzw5m-3hltk1

https://wolfram.com/xid/0d6gcrzw5m-m6387j

Visualize for fixed intensity and varying dimension:

https://wolfram.com/xid/0d6gcrzw5m-8g4nyq

The empty space function for a cluster process ThomasPointProcess with specified dimension:

https://wolfram.com/xid/0d6gcrzw5m-7ib6aq

https://wolfram.com/xid/0d6gcrzw5m-qpvl0c


https://wolfram.com/xid/0d6gcrzw5m-sehhpq

https://wolfram.com/xid/0d6gcrzw5m-kghzua

The empty space function for a cluster process MaternPointProcess with specified dimension:

https://wolfram.com/xid/0d6gcrzw5m-oi9wov

https://wolfram.com/xid/0d6gcrzw5m-ofqh4k


https://wolfram.com/xid/0d6gcrzw5m-yqw7j7

https://wolfram.com/xid/0d6gcrzw5m-1q0vyt

Options (3)Common values & functionality for each option
SpatialBoundaryCorrection (2)
The EmptySpaceF estimator without boundary correction is biased and should not be used unless with a large point set:

https://wolfram.com/xid/0d6gcrzw5m-1aqzq

https://wolfram.com/xid/0d6gcrzw5m-88aqlu

The default method "BorderMargin" only considers the points that are distance from the boundary:

https://wolfram.com/xid/0d6gcrzw5m-eholvz

"Hanisch" method weights each point in the observation region to make the estimated values unbiased:

https://wolfram.com/xid/0d6gcrzw5m-dlt8hb

"KaplanMeier" and "NelsonAalen" methods are estimators used in SurvivalDistribution. The distance of each point to its nearest neighbor point is censored by the distance of each point to the boundary of the observation region:

https://wolfram.com/xid/0d6gcrzw5m-g51708


https://wolfram.com/xid/0d6gcrzw5m-e9hv8s

Compare the different edge correction methods:

https://wolfram.com/xid/0d6gcrzw5m-cse7si
Estimate the values of the empty space function with three different methods:

https://wolfram.com/xid/0d6gcrzw5m-ihhmaw

https://wolfram.com/xid/0d6gcrzw5m-lflu49

https://wolfram.com/xid/0d6gcrzw5m-8edxf9

https://wolfram.com/xid/0d6gcrzw5m-pw5mgr

Method (1)
Discretization setting can be provided under Method as suboptions:

https://wolfram.com/xid/0d6gcrzw5m-uj3zyb
Estimate the empty space function at the same radius with different values of MaxCellMeasure:

https://wolfram.com/xid/0d6gcrzw5m-cpbs9d

Use different discretization methods to estimate the empty space function at the same radius:

https://wolfram.com/xid/0d6gcrzw5m-kd4lvk

Applications (3)Sample problems that can be solved with this function
The empty space function for spatially random data:

https://wolfram.com/xid/0d6gcrzw5m-3j6zid

https://wolfram.com/xid/0d6gcrzw5m-e4j1vb

https://wolfram.com/xid/0d6gcrzw5m-9eo6ef

The empty space function for hardcore data:

https://wolfram.com/xid/0d6gcrzw5m-887yj9
Estimate the values of the empty space function with given data:

https://wolfram.com/xid/0d6gcrzw5m-qpbqmc

https://wolfram.com/xid/0d6gcrzw5m-p2nje6

On Monday, May 20, 2019, the Severe Prediction Center highlighted a small corridor from the northeastern part of the Texas Panhandle to central Oklahoma in a 45 percent probability of EF2–EF5 tornadoes to occur within 25 miles of a given location, which defines a value of EmptySpaceF:

https://wolfram.com/xid/0d6gcrzw5m-q64sed
Assuming uniform intensity over the region, use the Poisson point process as a tornado pattern model:

https://wolfram.com/xid/0d6gcrzw5m-q8tcl2


https://wolfram.com/xid/0d6gcrzw5m-d56no8


Define the Poisson point process:

https://wolfram.com/xid/0d6gcrzw5m-d3ujrz

Compute probabilities of a tornado within a given radius of a location:

https://wolfram.com/xid/0d6gcrzw5m-rilcg6

Simulate a possible tornado spread over the state of Oklahoma:

https://wolfram.com/xid/0d6gcrzw5m-8lp3a2


https://wolfram.com/xid/0d6gcrzw5m-f3mm3b

Properties & Relations (4)Properties of the function, and connections to other functions
The empty space function behaves like a CDF:

https://wolfram.com/xid/0d6gcrzw5m-5a1gl8

https://wolfram.com/xid/0d6gcrzw5m-i96592


https://wolfram.com/xid/0d6gcrzw5m-usfklo

The empty space function for a PoissonPointProcess is equivalent to SurvivalFunction at 0 of PointCountDistribution on a disk of radius :

https://wolfram.com/xid/0d6gcrzw5m-nh7u6b

https://wolfram.com/xid/0d6gcrzw5m-kdmuk4

Define the point count distribution for the process on a ball of radius :

https://wolfram.com/xid/0d6gcrzw5m-02en7s
Compare its survival function at 0 with the empty space function for fixed dimensions:

https://wolfram.com/xid/0d6gcrzw5m-waz3gk


https://wolfram.com/xid/0d6gcrzw5m-h5d2e0


https://wolfram.com/xid/0d6gcrzw5m-bjwdco

The empty space and the nearest neighbor functions of a PoissonPointProcess are identical:

https://wolfram.com/xid/0d6gcrzw5m-ezl23u

https://wolfram.com/xid/0d6gcrzw5m-peicch


https://wolfram.com/xid/0d6gcrzw5m-s1mw7o


https://wolfram.com/xid/0d6gcrzw5m-iuhnsy

In 1D they are both equivalent to the CDF of an ExponentialDistribution:

https://wolfram.com/xid/0d6gcrzw5m-tk0pll

https://wolfram.com/xid/0d6gcrzw5m-ynkq7r


https://wolfram.com/xid/0d6gcrzw5m-9i3ozc

EmptySpaceF is often compared with NearestNeighborG, which estimates the probability of finding another point within distance r from a point in the point collection:

https://wolfram.com/xid/0d6gcrzw5m-eqvqul

https://wolfram.com/xid/0d6gcrzw5m-o9rtf6
Visualize the result with ListPlot:

https://wolfram.com/xid/0d6gcrzw5m-pj4yjt

Compare the estimates between EmptySpaceF and NearestNeighborG for point data generated by HardcorePointProcess:

https://wolfram.com/xid/0d6gcrzw5m-wwblhc


https://wolfram.com/xid/0d6gcrzw5m-h8iraa

https://wolfram.com/xid/0d6gcrzw5m-9axykf

Wolfram Research (2020), EmptySpaceF, Wolfram Language function, https://reference.wolfram.com/language/ref/EmptySpaceF.html.
Text
Wolfram Research (2020), EmptySpaceF, Wolfram Language function, https://reference.wolfram.com/language/ref/EmptySpaceF.html.
Wolfram Research (2020), EmptySpaceF, Wolfram Language function, https://reference.wolfram.com/language/ref/EmptySpaceF.html.
CMS
Wolfram Language. 2020. "EmptySpaceF." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EmptySpaceF.html.
Wolfram Language. 2020. "EmptySpaceF." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EmptySpaceF.html.
APA
Wolfram Language. (2020). EmptySpaceF. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EmptySpaceF.html
Wolfram Language. (2020). EmptySpaceF. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EmptySpaceF.html
BibTeX
@misc{reference.wolfram_2025_emptyspacef, author="Wolfram Research", title="{EmptySpaceF}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/EmptySpaceF.html}", note=[Accessed: 07-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_emptyspacef, organization={Wolfram Research}, title={EmptySpaceF}, year={2020}, url={https://reference.wolfram.com/language/ref/EmptySpaceF.html}, note=[Accessed: 07-June-2025
]}