Volume
✖
Volume
Details and Options

- A three-dimensional region can be embedded in any dimension greater than or equal to three.
- In Volume[x,{s,smin,smax},{t,tmin,tmax},{u,umin,umax}], if x is a scalar, Volume returns the volume of the parametric three-region {s,t,u,x}.
- Coordinate charts in the fifth argument of Volume can be specified as triples {coordsys,metric,dim} in the same way as in the first argument of CoordinateChartData. The short form in which dim is omitted may be used.
- The following options can be given:
-
AccuracyGoal Infinity digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters GenerateConditions Automatic whether to generate conditions on parameters PerformanceGoal $PerformanceGoal aspects of performance to try to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations - Symbolic limits of integration are assumed to be real and ordered. Symbolic coordinate chart parameters are assumed to be in range given by the "ParameterRangeAssumptions" property of CoordinateChartData.

Examples
open allclose allBasic Examples (4)Summary of the most common use cases
The volume of a unit ball in 3D:

https://wolfram.com/xid/0tz9x816-sy8lbf


https://wolfram.com/xid/0tz9x816-2uvyd5

The volume of a standard simplex in 3D:

https://wolfram.com/xid/0tz9x816-cn6j8h


https://wolfram.com/xid/0tz9x816-uzivxt

The volume of a rectangular cuboid:

https://wolfram.com/xid/0tz9x816-8wv1d8

Volume of the cylinder ,
expressed in cylindrical coordinates:

https://wolfram.com/xid/0tz9x816-8oa2el

Scope (20)Survey of the scope of standard use cases
Special Regions (7)
Volume of a Cuboid:

https://wolfram.com/xid/0tz9x816-cftuk2


https://wolfram.com/xid/0tz9x816-llsaa6


https://wolfram.com/xid/0tz9x816-3bhqsq


https://wolfram.com/xid/0tz9x816-b8zdur


https://wolfram.com/xid/0tz9x816-0j9llh

Simplex in 3D:

https://wolfram.com/xid/0tz9x816-rz305


https://wolfram.com/xid/0tz9x816-8h00rg

A volume simplex embedded in 4D:

https://wolfram.com/xid/0tz9x816-baxmuk

Ball:

https://wolfram.com/xid/0tz9x816-d49pfu


https://wolfram.com/xid/0tz9x816-b7xnwr


https://wolfram.com/xid/0tz9x816-70dknw


https://wolfram.com/xid/0tz9x816-y9ip8


https://wolfram.com/xid/0tz9x816-8eal6


https://wolfram.com/xid/0tz9x816-c6qckc


https://wolfram.com/xid/0tz9x816-fd9pjv


https://wolfram.com/xid/0tz9x816-nlo5u


https://wolfram.com/xid/0tz9x816-fxcmr8

Cone:

https://wolfram.com/xid/0tz9x816-i4z5mu


https://wolfram.com/xid/0tz9x816-5k72s


https://wolfram.com/xid/0tz9x816-tqnt0e

Formula Regions (2)
The volume of a ball represented as an ImplicitRegion:

https://wolfram.com/xid/0tz9x816-oykaz1


https://wolfram.com/xid/0tz9x816-cqp0xt

The volume of a ball represented as a ParametricRegion:

https://wolfram.com/xid/0tz9x816-emmtka

https://wolfram.com/xid/0tz9x816-fvitc6

A cylinder represented with a rational parametrization:

https://wolfram.com/xid/0tz9x816-bxbob8

Mesh Regions (2)
The volume of a MeshRegion:

https://wolfram.com/xid/0tz9x816-hptxy


https://wolfram.com/xid/0tz9x816-evn5ul

The volume of a BoundaryMeshRegion:

https://wolfram.com/xid/0tz9x816-o9vxn


https://wolfram.com/xid/0tz9x816-c4mkmt

Derived Regions (3)
The volume of a RegionIntersection:

https://wolfram.com/xid/0tz9x816-8brni

https://wolfram.com/xid/0tz9x816-5fe7j0


https://wolfram.com/xid/0tz9x816-1d7a5

The volume of a TransformedRegion:

https://wolfram.com/xid/0tz9x816-ebl7ww

https://wolfram.com/xid/0tz9x816-7hop3r


https://wolfram.com/xid/0tz9x816-n1impd

The volume of a RegionBoundary:

https://wolfram.com/xid/0tz9x816-hkslw5


https://wolfram.com/xid/0tz9x816-ljvzcw

Parametric Formulas (6)
The volume of an ellipsoid with semimajor axes 3, 2, and 1:

https://wolfram.com/xid/0tz9x816-jwa9dj


https://wolfram.com/xid/0tz9x816-hgiczn

The volume of a hemispherical shell in spherical coordinates:

https://wolfram.com/xid/0tz9x816-j9ke5e


https://wolfram.com/xid/0tz9x816-zbc7h9

The volume of a torus of major radius 5 and minor radius 2:

https://wolfram.com/xid/0tz9x816-1pitot


https://wolfram.com/xid/0tz9x816-qoz8ox

The volume of the product of a disk and a circle embedded in four-dimensional space:

https://wolfram.com/xid/0tz9x816-ur3sdt

The volume of the paraboloid over the rectangle
:

https://wolfram.com/xid/0tz9x816-zqfzd3

Volume of one octant of a three-sphere using stereographic coordinates:

https://wolfram.com/xid/0tz9x816-oienkx

Options (3)Common values & functionality for each option
Assumptions (1)
The area of an elliptic pyramid with arbitrary semimajor axis , semiminor axis
, and height
:

https://wolfram.com/xid/0tz9x816-h12qz7

Adding an assumption that the semiaxes are positive simplifies the answer:

https://wolfram.com/xid/0tz9x816-yr9vto


https://wolfram.com/xid/0tz9x816-24ytqq

WorkingPrecision (2)
Compute the Volume using machine arithmetic:

https://wolfram.com/xid/0tz9x816-777jyw

In some cases, the exact answer cannot be computed:

https://wolfram.com/xid/0tz9x816-66h1xx

Find the Volume using 30 digits of precision:

https://wolfram.com/xid/0tz9x816-5n8cz9

Applications (6)Sample problems that can be solved with this function

https://wolfram.com/xid/0tz9x816-lp42t4

https://wolfram.com/xid/0tz9x816-4lana5

https://wolfram.com/xid/0tz9x816-t6rz5


https://wolfram.com/xid/0tz9x816-gacd2u


https://wolfram.com/xid/0tz9x816-8pyrza

Compute the volume of a polyhedron:

https://wolfram.com/xid/0tz9x816-4nvwy6


https://wolfram.com/xid/0tz9x816-l1mcma

The shape of the Earth is nearly that of an oblate spheroid with volume:

https://wolfram.com/xid/0tz9x816-70bbro

Substitute in the values for the semimajor and semiminor axes:

https://wolfram.com/xid/0tz9x816-8q8g1d

Find the mass of methanol in a Ball:

https://wolfram.com/xid/0tz9x816-u48x65

https://wolfram.com/xid/0tz9x816-6bgb0m

Find the mean density of a Cone with a non-uniform mass density defined by :

https://wolfram.com/xid/0tz9x816-vpjoxa

https://wolfram.com/xid/0tz9x816-qpucm2

Compute the volume of empty space in a can with tennis balls, each with a radius of 1.75 inches:

https://wolfram.com/xid/0tz9x816-ug6x97

https://wolfram.com/xid/0tz9x816-z5qrg4

https://wolfram.com/xid/0tz9x816-h92vkh

Visualize a can of three balls:

https://wolfram.com/xid/0tz9x816-ix6xv5

Properties & Relations (5)Properties of the function, and connections to other functions
Volume is a non-negative quantity:

https://wolfram.com/xid/0tz9x816-0v59hv


https://wolfram.com/xid/0tz9x816-76fnat

Volume[r] is the same as RegionMeasure[r] for 3D regions:

https://wolfram.com/xid/0tz9x816-nct1tz

https://wolfram.com/xid/0tz9x816-jblaq

Volume[r] is the same as RegionMeasure[r,3] in general:

https://wolfram.com/xid/0tz9x816-olwei5

Volume[x,s,t,u,c] is equivalent to RegionMeasure[x,{s,t,u},c]:

https://wolfram.com/xid/0tz9x816-oasr4j


https://wolfram.com/xid/0tz9x816-mvk8pn

For a 3D region, Volume is defined as the integral of 1 over that region:

https://wolfram.com/xid/0tz9x816-g4cfg

To get the surface volume of a 4D region, use RegionBoundary:

https://wolfram.com/xid/0tz9x816-fnsw8n

Possible Issues (2)Common pitfalls and unexpected behavior
The parametric form of Volume computes the volume of possibly multiple coverings:

https://wolfram.com/xid/0tz9x816-4y4jpk

The region version computes the volume of the image:

https://wolfram.com/xid/0tz9x816-grcil2


https://wolfram.com/xid/0tz9x816-e3v23y

The volume of a region of dimension other than 3 is Undefined:

https://wolfram.com/xid/0tz9x816-yrdpjb


https://wolfram.com/xid/0tz9x816-mz7pc2

Wolfram Research (2014), Volume, Wolfram Language function, https://reference.wolfram.com/language/ref/Volume.html (updated 2019).
Text
Wolfram Research (2014), Volume, Wolfram Language function, https://reference.wolfram.com/language/ref/Volume.html (updated 2019).
Wolfram Research (2014), Volume, Wolfram Language function, https://reference.wolfram.com/language/ref/Volume.html (updated 2019).
CMS
Wolfram Language. 2014. "Volume." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Volume.html.
Wolfram Language. 2014. "Volume." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Volume.html.
APA
Wolfram Language. (2014). Volume. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Volume.html
Wolfram Language. (2014). Volume. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Volume.html
BibTeX
@misc{reference.wolfram_2025_volume, author="Wolfram Research", title="{Volume}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/Volume.html}", note=[Accessed: 12-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_volume, organization={Wolfram Research}, title={Volume}, year={2019}, url={https://reference.wolfram.com/language/ref/Volume.html}, note=[Accessed: 12-May-2025
]}