WOLFRAM

WaveletPhi[wave,x]

gives the scaling function for the symbolic wavelet wave evaluated at x.

WaveletPhi[wave]

gives the scaling function as a pure function.

Details and Options

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Haar scaling function:

Out[1]=1
Out[2]=2

Symlet scaling function:

Out[1]=1
Out[2]=2

Scope  (4)Survey of the scope of standard use cases

Compute primal scaling function:

Out[1]=1
Out[2]=2

Dual scaling function:

Out[1]=1
Out[2]=2

Scaling function for HaarWavelet:

Out[1]=1

DaubechiesWavelet:

Out[2]=2

SymletWavelet:

Out[3]=3

CoifletWavelet:

Out[4]=4

BiorthogonalSplineWavelet:

Out[5]=5

ReverseBiorthogonalSplineWavelet:

Out[6]=6

CDFWavelet:

Out[7]=7

ShannonWavelet:

Out[8]=8

BattleLemarieWavelet:

Out[9]=9

MeyerWavelet:

Out[10]=10

Multivariate scaling and wavelet functions are products of univariate ones:

Out[2]=2

Options  (3)Common values & functionality for each option

MaxRecursion  (1)

Plot scaling function using different levels of recursion:

Out[1]=1

WorkingPrecision  (2)

By default WorkingPrecision->MachinePrecision is used:

Out[1]=1
Out[2]=2
Out[3]=3

Use higher-precision filter computation:

Out[1]=1
Out[2]=2

Properties & Relations  (4)Properties of the function, and connections to other functions

Scaling function integrates to unity :

Out[1]=1

In particular, :

Out[2]=2

satisfies the recursion equation :

Plot the components and the sum of the recursion:

Out[4]=4

Frequency response for is given by :

The filter is a lowpass filter:

Out[2]=2

Fourier transform of is given by :

Out[3]=3

Neat Examples  (1)Surprising or curious use cases

Plot translates and dilations of scaling function:

Out[2]=2
Out[3]=3
Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.
Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.

Text

Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.

Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.

CMS

Wolfram Language. 2010. "WaveletPhi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPhi.html.

Wolfram Language. 2010. "WaveletPhi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPhi.html.

APA

Wolfram Language. (2010). WaveletPhi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPhi.html

Wolfram Language. (2010). WaveletPhi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPhi.html

BibTeX

@misc{reference.wolfram_2025_waveletphi, author="Wolfram Research", title="{WaveletPhi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPhi.html}", note=[Accessed: 01-April-2025 ]}

@misc{reference.wolfram_2025_waveletphi, author="Wolfram Research", title="{WaveletPhi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPhi.html}", note=[Accessed: 01-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_waveletphi, organization={Wolfram Research}, title={WaveletPhi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPhi.html}, note=[Accessed: 01-April-2025 ]}

@online{reference.wolfram_2025_waveletphi, organization={Wolfram Research}, title={WaveletPhi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPhi.html}, note=[Accessed: 01-April-2025 ]}