WaveletPhi
✖
WaveletPhi
Details and Options

- The scaling function
satisfies the recursion equation
, where
are the lowpass filter coefficients.
- WaveletPhi[wave,x,"Dual"] gives the dual scaling function
for biorthogonal wavelets such as BiorthogonalSplineWavelet and ReverseBiorthogonalSplineWavelet.
- The dual scaling function satisfies the recursion equation
, where
are the dual lowpass filter coefficients.
- The following options can be used:
-
MaxRecursion 8 number of recursive iterations to use WorkingPrecision MachinePrecision precision to use in internal computations
Examples
open allclose allBasic Examples (2)Summary of the most common use cases

https://wolfram.com/xid/0mlijs723hoz-4lu6z4


https://wolfram.com/xid/0mlijs723hoz-kcilqx


https://wolfram.com/xid/0mlijs723hoz-ottmes


https://wolfram.com/xid/0mlijs723hoz-x9588r

Scope (4)Survey of the scope of standard use cases
Compute primal scaling function:

https://wolfram.com/xid/0mlijs723hoz-34r0y7


https://wolfram.com/xid/0mlijs723hoz-jrnvtl


https://wolfram.com/xid/0mlijs723hoz-rqnscj


https://wolfram.com/xid/0mlijs723hoz-wgpsnb

Scaling function for HaarWavelet:

https://wolfram.com/xid/0mlijs723hoz-5qil82


https://wolfram.com/xid/0mlijs723hoz-8a3e1y


https://wolfram.com/xid/0mlijs723hoz-6m8se7


https://wolfram.com/xid/0mlijs723hoz-uikmj


https://wolfram.com/xid/0mlijs723hoz-slohlo

ReverseBiorthogonalSplineWavelet:

https://wolfram.com/xid/0mlijs723hoz-isy48o


https://wolfram.com/xid/0mlijs723hoz-m6y6cq


https://wolfram.com/xid/0mlijs723hoz-cylqwd


https://wolfram.com/xid/0mlijs723hoz-2pig47


https://wolfram.com/xid/0mlijs723hoz-tg8sc8

Multivariate scaling and wavelet functions are products of univariate ones:

https://wolfram.com/xid/0mlijs723hoz-rk8e1w

https://wolfram.com/xid/0mlijs723hoz-49wf0

Options (3)Common values & functionality for each option
MaxRecursion (1)
WorkingPrecision (2)
By default WorkingPrecision->MachinePrecision is used:

https://wolfram.com/xid/0mlijs723hoz-jj9fjg


https://wolfram.com/xid/0mlijs723hoz-6vi03j


https://wolfram.com/xid/0mlijs723hoz-qtqwdb

Use higher-precision filter computation:

https://wolfram.com/xid/0mlijs723hoz-oxpk71


https://wolfram.com/xid/0mlijs723hoz-f6wruc

Properties & Relations (4)Properties of the function, and connections to other functions
Scaling function integrates to unity :

https://wolfram.com/xid/0mlijs723hoz-f8fecv


https://wolfram.com/xid/0mlijs723hoz-cckg8j

satisfies the recursion equation
:

https://wolfram.com/xid/0mlijs723hoz-yjbxzh

https://wolfram.com/xid/0mlijs723hoz-h6wmys
Plot the components and the sum of the recursion:

https://wolfram.com/xid/0mlijs723hoz-c986c4

https://wolfram.com/xid/0mlijs723hoz-jgy4v3

Frequency response for is given by
:

https://wolfram.com/xid/0mlijs723hoz-y5x0mm
The filter is a lowpass filter:

https://wolfram.com/xid/0mlijs723hoz-za6vn3

Fourier transform of is given by
:

https://wolfram.com/xid/0mlijs723hoz-idptzz

https://wolfram.com/xid/0mlijs723hoz-u0b6k1

https://wolfram.com/xid/0mlijs723hoz-z65kgr

Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.
Text
Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.
Wolfram Research (2010), WaveletPhi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPhi.html.
CMS
Wolfram Language. 2010. "WaveletPhi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPhi.html.
Wolfram Language. 2010. "WaveletPhi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPhi.html.
APA
Wolfram Language. (2010). WaveletPhi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPhi.html
Wolfram Language. (2010). WaveletPhi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPhi.html
BibTeX
@misc{reference.wolfram_2025_waveletphi, author="Wolfram Research", title="{WaveletPhi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPhi.html}", note=[Accessed: 01-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_waveletphi, organization={Wolfram Research}, title={WaveletPhi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPhi.html}, note=[Accessed: 01-April-2025
]}