WaveletPsi
✖
WaveletPsi
Details and Options

- The wavelet function
satisfies the recursion equation
, where
is the scaling function and
are the high-pass filter coefficients.
- A discrete wavelet transform effectively represents a signal
in terms of scaled and translated wavelet functions
, where
.
- WaveletPsi[wave,x,"Dual"] gives the dual wavelet function
for biorthogonal wavelets such as BiorthogonalSplineWavelet and ReverseBiorthogonalSplineWavelet.
- The dual wavelet function satisfies the recursion equation
, where
are the dual high-pass filter coefficients.
- The following options can be used:
-
MaxRecursion 8 number of recursive iterations to use WorkingPrecision MachinePrecision precision to use in internal computations
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0mlijs723ho4-b0xj5n


https://wolfram.com/xid/0mlijs723ho4-exatgm


https://wolfram.com/xid/0mlijs723ho4-vc7o0g


https://wolfram.com/xid/0mlijs723ho4-xdbxfp


https://wolfram.com/xid/0mlijs723ho4-rgea5u


https://wolfram.com/xid/0mlijs723ho4-s8s5w4

Scope (5)Survey of the scope of standard use cases
Compute primal wavelet function:

https://wolfram.com/xid/0mlijs723ho4-34r0y7


https://wolfram.com/xid/0mlijs723ho4-jrnvtl


https://wolfram.com/xid/0mlijs723ho4-rqnscj


https://wolfram.com/xid/0mlijs723ho4-wgpsnb

Wavelet function for discrete wavelets, including HaarWavelet:

https://wolfram.com/xid/0mlijs723ho4-5qil82


https://wolfram.com/xid/0mlijs723ho4-8a3e1y


https://wolfram.com/xid/0mlijs723ho4-6m8se7


https://wolfram.com/xid/0mlijs723ho4-uikmj


https://wolfram.com/xid/0mlijs723ho4-slohlo

ReverseBiorthogonalSplineWavelet:

https://wolfram.com/xid/0mlijs723ho4-isy48o


https://wolfram.com/xid/0mlijs723ho4-m6y6cq


https://wolfram.com/xid/0mlijs723ho4-cylqwd


https://wolfram.com/xid/0mlijs723ho4-2pig47


https://wolfram.com/xid/0mlijs723ho4-tg8sc8

Wavelet function for continuous wavelets, including DGaussianWavelet:

https://wolfram.com/xid/0mlijs723ho4-z43vp5


https://wolfram.com/xid/0mlijs723ho4-08gn4g


https://wolfram.com/xid/0mlijs723ho4-l7ss7d


https://wolfram.com/xid/0mlijs723ho4-dp3dkk


https://wolfram.com/xid/0mlijs723ho4-rvmw1f


https://wolfram.com/xid/0mlijs723ho4-w8vkr0

Multivariate scaling and wavelet functions are products of univariate ones:

https://wolfram.com/xid/0mlijs723ho4-s2egvc

https://wolfram.com/xid/0mlijs723ho4-tvf11


https://wolfram.com/xid/0mlijs723ho4-yf2o9


https://wolfram.com/xid/0mlijs723ho4-s16yjj


https://wolfram.com/xid/0mlijs723ho4-gmiius

Options (3)Common values & functionality for each option
MaxRecursion (1)
WorkingPrecision (2)
By default WorkingPrecision->MachinePrecision is used:

https://wolfram.com/xid/0mlijs723ho4-ec0mf7


https://wolfram.com/xid/0mlijs723ho4-3ruht5


https://wolfram.com/xid/0mlijs723ho4-qtqwdb

Use higher-precision filter computation:

https://wolfram.com/xid/0mlijs723ho4-oxpk71


https://wolfram.com/xid/0mlijs723ho4-f6wruc

Properties & Relations (4)Properties of the function, and connections to other functions
Wavelet function integrates to zero :

https://wolfram.com/xid/0mlijs723ho4-wzkw5n

satisfies the recursion equation
:

https://wolfram.com/xid/0mlijs723ho4-3enc2f

https://wolfram.com/xid/0mlijs723ho4-bux40a
Plot the components and the sum of the recursion:

https://wolfram.com/xid/0mlijs723ho4-4clwfm

https://wolfram.com/xid/0mlijs723ho4-p99dtx

Frequency response for is given by
:

https://wolfram.com/xid/0mlijs723ho4-fujnuf
The filter is a high-pass filter:

https://wolfram.com/xid/0mlijs723ho4-s5vizp

Fourier transform of is given by
:

https://wolfram.com/xid/0mlijs723ho4-4ndhmw

https://wolfram.com/xid/0mlijs723ho4-8z0zd4

https://wolfram.com/xid/0mlijs723ho4-hyy32u

https://wolfram.com/xid/0mlijs723ho4-f7zvgz

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.
Text
Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.
Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.
CMS
Wolfram Language. 2010. "WaveletPsi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPsi.html.
Wolfram Language. 2010. "WaveletPsi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPsi.html.
APA
Wolfram Language. (2010). WaveletPsi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPsi.html
Wolfram Language. (2010). WaveletPsi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPsi.html
BibTeX
@misc{reference.wolfram_2025_waveletpsi, author="Wolfram Research", title="{WaveletPsi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPsi.html}", note=[Accessed: 09-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_waveletpsi, organization={Wolfram Research}, title={WaveletPsi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPsi.html}, note=[Accessed: 09-June-2025
]}