WOLFRAM

WaveletPsi[wave,x]

gives the wavelet function for the symbolic wavelet wave evaluated at x.

WaveletPsi[wave]

gives the wavelet function as a pure function.

Details and Options

  • The wavelet function satisfies the recursion equation , where is the scaling function and are the high-pass filter coefficients.
  • A discrete wavelet transform effectively represents a signal in terms of scaled and translated wavelet functions , where .
  • WaveletPsi[wave,x,"Dual"] gives the dual wavelet function for biorthogonal wavelets such as BiorthogonalSplineWavelet and ReverseBiorthogonalSplineWavelet.
  • The dual wavelet function satisfies the recursion equation , where are the dual high-pass filter coefficients.
  • The following options can be used:
  • MaxRecursion 8number of recursive iterations to use
    WorkingPrecision MachinePrecisionprecision to use in internal computations

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Haar wavelet function:

Out[1]=1
Out[2]=2

Daubechies wavelet function:

Out[1]=1
Out[2]=2

Mexican hat wavelet function:

Out[1]=1
Out[2]=2

Scope  (5)Survey of the scope of standard use cases

Compute primal wavelet function:

Out[1]=1
Out[2]=2

Dual wavelet function:

Out[1]=1
Out[2]=2

Wavelet function for discrete wavelets, including HaarWavelet:

Out[1]=1

DaubechiesWavelet:

Out[2]=2

SymletWavelet:

Out[3]=3

CoifletWavelet:

Out[4]=4

BiorthogonalSplineWavelet:

Out[5]=5

ReverseBiorthogonalSplineWavelet:

Out[6]=6

CDFWavelet:

Out[7]=7

ShannonWavelet:

Out[8]=8

BattleLemarieWavelet:

Out[9]=9

MeyerWavelet:

Out[10]=10

Wavelet function for continuous wavelets, including DGaussianWavelet:

Out[1]=1

MexicanHatWavelet:

Out[2]=2

GaborWavelet:

Out[3]=3

ShannonWavelet:

Out[4]=4

MorletWavelet:

Out[5]=5

PaulWavelet:

Out[6]=6

Multivariate scaling and wavelet functions are products of univariate ones:

Out[2]=2
Out[3]=3
Out[4]=4
Out[5]=5

Options  (3)Common values & functionality for each option

MaxRecursion  (1)

Plot wavelet function using different levels of recursion:

Out[1]=1

WorkingPrecision  (2)

By default WorkingPrecision->MachinePrecision is used:

Out[1]=1
Out[2]=2
Out[3]=3

Use higher-precision filter computation:

Out[1]=1
Out[2]=2

Properties & Relations  (4)Properties of the function, and connections to other functions

Wavelet function integrates to zero :

Out[1]=1

satisfies the recursion equation :

Plot the components and the sum of the recursion:

Out[4]=4

Frequency response for is given by :

The filter is a high-pass filter:

Out[2]=2

Fourier transform of is given by :

Out[4]=4

Neat Examples  (1)Surprising or curious use cases

Plot translates and dilations of wavelet function:

Out[2]=2
Out[3]=3
Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.
Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

Text

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

CMS

Wolfram Language. 2010. "WaveletPsi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPsi.html.

Wolfram Language. 2010. "WaveletPsi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPsi.html.

APA

Wolfram Language. (2010). WaveletPsi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPsi.html

Wolfram Language. (2010). WaveletPsi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPsi.html

BibTeX

@misc{reference.wolfram_2025_waveletpsi, author="Wolfram Research", title="{WaveletPsi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPsi.html}", note=[Accessed: 09-June-2025 ]}

@misc{reference.wolfram_2025_waveletpsi, author="Wolfram Research", title="{WaveletPsi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPsi.html}", note=[Accessed: 09-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_waveletpsi, organization={Wolfram Research}, title={WaveletPsi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPsi.html}, note=[Accessed: 09-June-2025 ]}

@online{reference.wolfram_2025_waveletpsi, organization={Wolfram Research}, title={WaveletPsi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPsi.html}, note=[Accessed: 09-June-2025 ]}