FourierSinTransform
✖
FourierSinTransform
gives the multidimensional Fourier sine transform of expr.
Details and Options



- The Fourier sine transform is a particular way of viewing the Fourier transform without the need for complex numbers or negative frequencies.
- Joseph Fourier designed his famous transform using this and the Fourier cosine transform, and they are still used in applications like signal processing, statistics and image and video compression.
- The Fourier sine transform of the time domain function
is the frequency domain function
for
:
- The Fourier sine transform of a function
is by default defined to be
.
- The multidimensional Fourier sine transform of a function
is by default defined to be
or when using vector notation,
.
- Different choices of definitions can be specified using the option FourierParameters.
- The integral is computed using numerical methods if the third argument,
, is given a numerical value.
- The asymptotic Fourier sine transform can be computed using Asymptotic.
- There are several related Fourier transformations:
-
FourierTransform infinite continuous-time functions (FT) FourierSequenceTransform infinite discrete-time functions (DTFT) FourierCoefficient finite continuous-time functions (FS) Fourier finite discrete-time functions (DFT) - The Fourier sine transform is an automorphism in the Schwartz vector space of functions whose derivatives are rapidly decreasing and thus induces an automorphism in its dual: the space of tempered distributions. These include absolutely integrable functions, well-behaved functions of polynomial growth and compactly supported distributions.
- Hence, FourierSinTransform not only works with absolutely integrable functions on
, but it can also handle a variety of tempered distributions such as DiracDelta to enlarge the pool of functions or generalized functions it can effectively transform.
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters FourierParameters {0,1} parameters to define the Fourier sine transform GenerateConditions False whether to generate answers that involve conditions on parameters PerformanceGoal $PerformanceGoal aspects of performance to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations - Common settings for FourierParameters include:
-
{0,1} {1,1} {-1,1} {0,2Pi} {a,b}

Examples
open allclose allBasic Examples (6)Summary of the most common use cases
Compute the Fourier sine transform of a function:

https://wolfram.com/xid/0yv4747dycuq-23b8wo

Plot the function and its Fourier sine transform:

https://wolfram.com/xid/0yv4747dycuq-7v3k9i

Fourier sine transform of an exponential function:

https://wolfram.com/xid/0yv4747dycuq-6zrucp

For a different convention, change the parameters:

https://wolfram.com/xid/0yv4747dycuq-y0sapp

Fourier sine transform of the reciprocal of a square root:

https://wolfram.com/xid/0yv4747dycuq-mg0u2w

Compute the Fourier sine transform of a multivariate function:

https://wolfram.com/xid/0yv4747dycuq-iun92t

Plot the function and its transform:

https://wolfram.com/xid/0yv4747dycuq-r7glj0

Compute the transform at a single point:

https://wolfram.com/xid/0yv4747dycuq-imjbib

Scope (37)Survey of the scope of standard use cases
Basic Uses (3)
Fourier sine transform of a function for a symbolic parameter :

https://wolfram.com/xid/0yv4747dycuq-4ynz91


https://wolfram.com/xid/0yv4747dycuq-21w99q

Fourier sine transforms involving trigonometric functions:

https://wolfram.com/xid/0yv4747dycuq-37i4a9


https://wolfram.com/xid/0yv4747dycuq-ylueav


https://wolfram.com/xid/0yv4747dycuq-n6cguf


https://wolfram.com/xid/0yv4747dycuq-9m2bjy

Evaluate the Fourier sine transform for a numerical value of the parameter :

https://wolfram.com/xid/0yv4747dycuq-7s4bdl

Algebraic Functions (3)
Fourier sine transform of power functions:

https://wolfram.com/xid/0yv4747dycuq-34yl88

Sine transform of rational functions:

https://wolfram.com/xid/0yv4747dycuq-e0m0lo


https://wolfram.com/xid/0yv4747dycuq-fpdfnk


https://wolfram.com/xid/0yv4747dycuq-4mwsj1


https://wolfram.com/xid/0yv4747dycuq-3p3hty


https://wolfram.com/xid/0yv4747dycuq-x4savd


https://wolfram.com/xid/0yv4747dycuq-ci0tju


https://wolfram.com/xid/0yv4747dycuq-c0ysf5


https://wolfram.com/xid/0yv4747dycuq-d9kc2j


https://wolfram.com/xid/0yv4747dycuq-k3l3y7


https://wolfram.com/xid/0yv4747dycuq-vamovl

Fourier sine transform of a quotient of two polynomials:

https://wolfram.com/xid/0yv4747dycuq-y5uzc3


https://wolfram.com/xid/0yv4747dycuq-thzach

Exponential and Logarithmic Functions (3)
Fourier sine transforms for exponential functions:

https://wolfram.com/xid/0yv4747dycuq-u1kxbo


https://wolfram.com/xid/0yv4747dycuq-da2xmy


https://wolfram.com/xid/0yv4747dycuq-el4sge


https://wolfram.com/xid/0yv4747dycuq-guvbpy


https://wolfram.com/xid/0yv4747dycuq-c33cpq


https://wolfram.com/xid/0yv4747dycuq-nxe6en

Fourier sine transform of a Gaussian:

https://wolfram.com/xid/0yv4747dycuq-g6o6mg


https://wolfram.com/xid/0yv4747dycuq-519vo9


https://wolfram.com/xid/0yv4747dycuq-0jv9wn


https://wolfram.com/xid/0yv4747dycuq-hymiq7


https://wolfram.com/xid/0yv4747dycuq-up5x46

Sine transforms of logarithmic functions:

https://wolfram.com/xid/0yv4747dycuq-evmn0t


https://wolfram.com/xid/0yv4747dycuq-4exxuo


https://wolfram.com/xid/0yv4747dycuq-nf71us


https://wolfram.com/xid/0yv4747dycuq-h4wyh6


https://wolfram.com/xid/0yv4747dycuq-l0ukce


https://wolfram.com/xid/0yv4747dycuq-kh8443


https://wolfram.com/xid/0yv4747dycuq-6y7tru


https://wolfram.com/xid/0yv4747dycuq-6rfwo

Trigonometric Functions (3)
Composition of elementary functions:

https://wolfram.com/xid/0yv4747dycuq-jttj4i


https://wolfram.com/xid/0yv4747dycuq-xf6870


https://wolfram.com/xid/0yv4747dycuq-gfk34x


https://wolfram.com/xid/0yv4747dycuq-k0xhvg


https://wolfram.com/xid/0yv4747dycuq-by62s2


https://wolfram.com/xid/0yv4747dycuq-o44udk


https://wolfram.com/xid/0yv4747dycuq-1raban


https://wolfram.com/xid/0yv4747dycuq-dzakc7

Fourier sine transform of the product of exponential and trigonometric functions:

https://wolfram.com/xid/0yv4747dycuq-mpau2u


https://wolfram.com/xid/0yv4747dycuq-nlr0o8


https://wolfram.com/xid/0yv4747dycuq-6dnrw0


https://wolfram.com/xid/0yv4747dycuq-229x0h

Fourier sine transforms of arctangent functions:

https://wolfram.com/xid/0yv4747dycuq-1lpb4


https://wolfram.com/xid/0yv4747dycuq-zaxnsl


https://wolfram.com/xid/0yv4747dycuq-tigy9


https://wolfram.com/xid/0yv4747dycuq-f59a5a

Special Functions (8)
Fourier sine transforms of expressions involving the Sinc function:

https://wolfram.com/xid/0yv4747dycuq-geedsn


https://wolfram.com/xid/0yv4747dycuq-sun6r0


https://wolfram.com/xid/0yv4747dycuq-xq2xg3


https://wolfram.com/xid/0yv4747dycuq-ksuktw

Fourier sine transform of ExpIntegralEi:

https://wolfram.com/xid/0yv4747dycuq-paksr2


https://wolfram.com/xid/0yv4747dycuq-qhk5hj

Transform of Erf:

https://wolfram.com/xid/0yv4747dycuq-e4ovt2


https://wolfram.com/xid/0yv4747dycuq-i3eyn

Transform of Erfc:

https://wolfram.com/xid/0yv4747dycuq-83z1yo


https://wolfram.com/xid/0yv4747dycuq-bl2a36

Expression involving the SinIntegral:

https://wolfram.com/xid/0yv4747dycuq-ifruz9


https://wolfram.com/xid/0yv4747dycuq-ojs53e


https://wolfram.com/xid/0yv4747dycuq-lbgyzq


https://wolfram.com/xid/0yv4747dycuq-tq0qk4

Sine transforms for BesselJ functions:

https://wolfram.com/xid/0yv4747dycuq-sheqd6


https://wolfram.com/xid/0yv4747dycuq-v57fbv


https://wolfram.com/xid/0yv4747dycuq-0po19w


https://wolfram.com/xid/0yv4747dycuq-i8mbty


https://wolfram.com/xid/0yv4747dycuq-htktsp


https://wolfram.com/xid/0yv4747dycuq-hsl6h0

Sine transforms for BesselY functions:

https://wolfram.com/xid/0yv4747dycuq-p811xa


https://wolfram.com/xid/0yv4747dycuq-s0a2t0


https://wolfram.com/xid/0yv4747dycuq-ykk7rt


https://wolfram.com/xid/0yv4747dycuq-ev7j53

Piecewise Functions and Distributions (4)
Fourier sine transform of a piecewise function:

https://wolfram.com/xid/0yv4747dycuq-8sy1xc


https://wolfram.com/xid/0yv4747dycuq-zl93cr

Restriction of a sine function to a half-period:

https://wolfram.com/xid/0yv4747dycuq-ubddcp


https://wolfram.com/xid/0yv4747dycuq-bfynq8


https://wolfram.com/xid/0yv4747dycuq-oann5g


https://wolfram.com/xid/0yv4747dycuq-2l2h82

Transforms in terms of FresnelS:

https://wolfram.com/xid/0yv4747dycuq-5lhjyp


https://wolfram.com/xid/0yv4747dycuq-2bb6ob


https://wolfram.com/xid/0yv4747dycuq-sb1j2z


https://wolfram.com/xid/0yv4747dycuq-29gotf

Periodic Functions (2)
Fourier sine transform of sine:

https://wolfram.com/xid/0yv4747dycuq-u2x9am

Fourier sine transform of SquareWave:

https://wolfram.com/xid/0yv4747dycuq-ffviam


https://wolfram.com/xid/0yv4747dycuq-rrfprq

Generalized Functions (4)
Fourier sine transforms of expressions involving HeavisideTheta:

https://wolfram.com/xid/0yv4747dycuq-60mbhv


https://wolfram.com/xid/0yv4747dycuq-qs90mg


https://wolfram.com/xid/0yv4747dycuq-jbyyj6


https://wolfram.com/xid/0yv4747dycuq-v1jvk5

Fourier sine transforms involving DiracDelta:

https://wolfram.com/xid/0yv4747dycuq-uvvh37


https://wolfram.com/xid/0yv4747dycuq-b16dou


https://wolfram.com/xid/0yv4747dycuq-xxxbkb


https://wolfram.com/xid/0yv4747dycuq-e0aopw

Fourier sine transform involving HeavisideLambda:

https://wolfram.com/xid/0yv4747dycuq-6mp5hw


https://wolfram.com/xid/0yv4747dycuq-ffj755

Fourier sine transform involving HeavisidePi:

https://wolfram.com/xid/0yv4747dycuq-8ghc31


https://wolfram.com/xid/0yv4747dycuq-xju3an

Multivariate Functions (2)
Fourier sine transform of an exponential functions in two variables:

https://wolfram.com/xid/0yv4747dycuq-9cug3a


https://wolfram.com/xid/0yv4747dycuq-8yb0o2


https://wolfram.com/xid/0yv4747dycuq-75byoz


https://wolfram.com/xid/0yv4747dycuq-s8c5jc

Fourier sine transform of product of exponential and SquareWave:

https://wolfram.com/xid/0yv4747dycuq-cczu71


https://wolfram.com/xid/0yv4747dycuq-24pq4p

Formal Properties (3)
Fourier sine transform of a first-order derivative:

https://wolfram.com/xid/0yv4747dycuq-cgv9xz

Fourier sine transform of a second-order derivative:

https://wolfram.com/xid/0yv4747dycuq-7cahab

Fourier sine transform threads itself over equations:

https://wolfram.com/xid/0yv4747dycuq-u3a9a5

Numerical Evaluation (2)
Calculate the Fourier sine transform at a single point:

https://wolfram.com/xid/0yv4747dycuq-saipi6

Alternatively, calculate the Fourier sine transform symbolically:

https://wolfram.com/xid/0yv4747dycuq-vt3ppm

Then evaluate it for specific value of :

https://wolfram.com/xid/0yv4747dycuq-czsagq

Options (8)Common values & functionality for each option
AccuracyGoal (1)
The option AccuracyGoal sets the number of digits of accuracy:

https://wolfram.com/xid/0yv4747dycuq-5ymjb


https://wolfram.com/xid/0yv4747dycuq-f6u3ua


https://wolfram.com/xid/0yv4747dycuq-fhbr

Assumptions (1)
Fourier sine transform of BesselJ is a piecewise function:

https://wolfram.com/xid/0yv4747dycuq-nagwk1


https://wolfram.com/xid/0yv4747dycuq-fk9tc3

FourierParameters (3)
Fourier sine transform for the unit box function with different parameters:

Use a nondefault setting for a different definition of the transform:

https://wolfram.com/xid/0yv4747dycuq-ejscab

To get the inverse, use the same FourierParameters setting:

https://wolfram.com/xid/0yv4747dycuq-j5l0np

Set up your particular global choice of parameters once per session:

https://wolfram.com/xid/0yv4747dycuq-tcyt2a


https://wolfram.com/xid/0yv4747dycuq-kb7shy


https://wolfram.com/xid/0yv4747dycuq-uc9bv5

GenerateConditions (1)
Use GenerateConditions True to get the parameter conditions necessary for the result to be valid:

https://wolfram.com/xid/0yv4747dycuq-dosv41

PrecisionGoal (1)
The option PrecisionGoal sets the relative tolerance in the integration:

https://wolfram.com/xid/0yv4747dycuq-n3x5d0


https://wolfram.com/xid/0yv4747dycuq-9119x


https://wolfram.com/xid/0yv4747dycuq-b3dg8e

WorkingPrecision (1)
If a WorkingPrecision is specified, the computation is done at that working precision:

https://wolfram.com/xid/0yv4747dycuq-d1i4yb


https://wolfram.com/xid/0yv4747dycuq-duvdjv


https://wolfram.com/xid/0yv4747dycuq-cx1m7u

Applications (4)Sample problems that can be solved with this function
Ordinary Differential Equations (1)
Consider the following ODE with initial condition :

https://wolfram.com/xid/0yv4747dycuq-ej7og1

Apply the Fourier sine transform to the ODE:

https://wolfram.com/xid/0yv4747dycuq-wkf3px


https://wolfram.com/xid/0yv4747dycuq-ilph5p

Find the inverse Fourier sine transform with and
:

https://wolfram.com/xid/0yv4747dycuq-g6xb71

Compare with DSolveValue:

https://wolfram.com/xid/0yv4747dycuq-6h29lw

Partial Differential Equations (1)
Solve the infinite diffusion problem for ,
:
with initial condition
for
and boundary condition
for
:

https://wolfram.com/xid/0yv4747dycuq-jscm4x
Fourier sine transform with respect to :

https://wolfram.com/xid/0yv4747dycuq-9py0g3


https://wolfram.com/xid/0yv4747dycuq-4bllfe

Compute the inverse sine transform:

https://wolfram.com/xid/0yv4747dycuq-1r2yv3

Compare with DSolveValue:

https://wolfram.com/xid/0yv4747dycuq-dkim4w

Consider the special case with and
:

https://wolfram.com/xid/0yv4747dycuq-bvc9pm

Evaluation of Integrals (2)
Calculate the following definite integral for :

https://wolfram.com/xid/0yv4747dycuq-8tmc8r

Compute the Fourier sine transform of an exponential function:

https://wolfram.com/xid/0yv4747dycuq-ee38yx

Apply the Fourier sine inversion formula:

https://wolfram.com/xid/0yv4747dycuq-l8n5u3

Solve for the definite integral:

https://wolfram.com/xid/0yv4747dycuq-1yiih3

Compare with Integrate:

https://wolfram.com/xid/0yv4747dycuq-jdypq8

Calculate the following definite integral for :

https://wolfram.com/xid/0yv4747dycuq-r687jy

Compute the Fourier sine transform of an exponential function:

https://wolfram.com/xid/0yv4747dycuq-drholg


https://wolfram.com/xid/0yv4747dycuq-gkfkxr


https://wolfram.com/xid/0yv4747dycuq-tbzmtb

Solve for the definite integral:

https://wolfram.com/xid/0yv4747dycuq-6ioxzg

Compare with Integrate:

https://wolfram.com/xid/0yv4747dycuq-5jgzyd

Properties & Relations (4)Properties of the function, and connections to other functions
By default, the Fourier sine transform of is:

https://wolfram.com/xid/0yv4747dycuq-iyfnht

For , the definite integral becomes:

https://wolfram.com/xid/0yv4747dycuq-p3u34y

Compare with FourierSinTransform:

https://wolfram.com/xid/0yv4747dycuq-d9s0gi

Use Asymptotic to compute an asymptotic approximation:

https://wolfram.com/xid/0yv4747dycuq-lwbzos

FourierSinTransform and InverseFourierSinTransform are mutual inverses:

https://wolfram.com/xid/0yv4747dycuq-bp78fy


https://wolfram.com/xid/0yv4747dycuq-bhj9ka


https://wolfram.com/xid/0yv4747dycuq-it7bfn


https://wolfram.com/xid/0yv4747dycuq-byd6ra

Results from FourierSinTransform and FourierTransform differ by a factor of for odd functions:

https://wolfram.com/xid/0yv4747dycuq-hrqxcb


https://wolfram.com/xid/0yv4747dycuq-ef1iz8

The results differ by a factor of for ω>0:

https://wolfram.com/xid/0yv4747dycuq-b2ebmr

Possible Issues (1)Common pitfalls and unexpected behavior
The result from an inverse Fourier sine transform may not have the same form as the original:

https://wolfram.com/xid/0yv4747dycuq-5jbdmw


https://wolfram.com/xid/0yv4747dycuq-csfig0

The Fourier sine transform may be given in terms of generalized functions such as DiracDelta:

https://wolfram.com/xid/0yv4747dycuq-mjrqa7


https://wolfram.com/xid/0yv4747dycuq-j88uu6

Neat Examples (2)Surprising or curious use cases
The Fourier sine transform represented in terms of MeijerG:

https://wolfram.com/xid/0yv4747dycuq-3m6m5

Create a table of basic Fourier sine transforms:

https://wolfram.com/xid/0yv4747dycuq-wwndk9

https://wolfram.com/xid/0yv4747dycuq-zsny25

Wolfram Research (1999), FourierSinTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSinTransform.html (updated 2025).
Text
Wolfram Research (1999), FourierSinTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSinTransform.html (updated 2025).
Wolfram Research (1999), FourierSinTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSinTransform.html (updated 2025).
CMS
Wolfram Language. 1999. "FourierSinTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/FourierSinTransform.html.
Wolfram Language. 1999. "FourierSinTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/FourierSinTransform.html.
APA
Wolfram Language. (1999). FourierSinTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSinTransform.html
Wolfram Language. (1999). FourierSinTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSinTransform.html
BibTeX
@misc{reference.wolfram_2025_fouriersintransform, author="Wolfram Research", title="{FourierSinTransform}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/FourierSinTransform.html}", note=[Accessed: 11-July-2025
]}
BibLaTeX
@online{reference.wolfram_2025_fouriersintransform, organization={Wolfram Research}, title={FourierSinTransform}, year={2025}, url={https://reference.wolfram.com/language/ref/FourierSinTransform.html}, note=[Accessed: 11-July-2025
]}