InverseFourierCosTransform
✖
InverseFourierCosTransform
gives the multidimensional inverse Fourier cosine transform of expr.
Details and Options




- The Fourier cosine transform is a particular way of viewing the Fourier transform without the need for complex numbers or negative frequencies.
- Joseph Fourier designed his famous transform using this and the Fourier sine transform, and they are still used in applications like signal processing, statistics and image and video compression.
- The inverse Fourier cosine transform of the frequency domain function
is the time domain function
for
:
- The inverse Fourier cosine transform of a function
is by default defined as
.
- The multidimensional inverse Fourier cosine transform of a function
is by default defined as
or when using vector notation,
.
- Different choices of definitions can be specified using the option FourierParameters.
- The integral is computed using numerical methods if the third argument,
, is given a numerical value.
- The asymptotic inverse Fourier cosine transform can be computed using Asymptotic.
- There are several related Fourier transformations:
-
FourierTransform infinite continuous-time functions (FT) FourierSequenceTransform infinite discrete-time functions (DTFT) FourierCoefficient finite continuous-time functions (FS) Fourier finite discrete-time functions (DFT) - The inverse Fourier cosine transform is an automorphism in the Schwartz vector space of functions whose derivatives are rapidly decreasing and thus induces an automorphism in its dual: the space of tempered distributions. These include absolutely integrable functions, well-behaved functions of polynomial growth and compactly supported distributions.
- Hence, InverseFourierCosTransform not only works with absolutely integrable functions on
, but it can also handle a variety of tempered distributions such as DiracDelta to enlarge the pool of functions or generalized functions it can effectively transform.
- The lower limit of the integral is effectively taken to be
, so that the inverse Fourier cosine transform of the Dirac delta function
is equal to
. »
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters FourierParameters {0,1} parameters to define the inverse Fourier cosine transform GenerateConditions False whether to generate answers that involve conditions on parameters PerformanceGoal $PerformanceGoal aspects of performance to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations - Common settings for FourierParameters include:
-
{0,1} {1,1} {-1,1} {0,2Pi} {a,b}

Examples
open allclose allBasic Examples (6)Summary of the most common use cases
Compute the inverse Fourier cosine transform of a function:

https://wolfram.com/xid/0ixfgt46t1bkc5e-gm7wa2

Plot the function and its inverse cosine transform:

https://wolfram.com/xid/0ixfgt46t1bkc5e-5fci89

Inverse Fourier cosine transform of reciprocal square root:

https://wolfram.com/xid/0ixfgt46t1bkc5e-28dp0t

For a different convention, change the parameters:

https://wolfram.com/xid/0ixfgt46t1bkc5e-py5hxq

Inverse Fourier cosine transform of a Gaussian is another Gaussian:

https://wolfram.com/xid/0ixfgt46t1bkc5e-fwkh1w


https://wolfram.com/xid/0ixfgt46t1bkc5e-treoee

Compute the inverse Fourier cosine transform of a multivariate function:

https://wolfram.com/xid/0ixfgt46t1bkc5e-7gezt1


https://wolfram.com/xid/0ixfgt46t1bkc5e-5vrckt

Compute the inverse transform at a single point:

https://wolfram.com/xid/0ixfgt46t1bkc5e-xhwnbt

Scope (43)Survey of the scope of standard use cases
Basic Uses (3)
Inverse Fourier cosine transform of a function for a symbolic parameter :

https://wolfram.com/xid/0ixfgt46t1bkc5e-3tfh8t

Inverse Fourier cosine transforms involving trigonometric functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-i6lofd


https://wolfram.com/xid/0ixfgt46t1bkc5e-1b4ghq


https://wolfram.com/xid/0ixfgt46t1bkc5e-1mrlz2


https://wolfram.com/xid/0ixfgt46t1bkc5e-guxs6c

Evaluate the inverse Fourier cosine transform for a numerical value of the parameter :

https://wolfram.com/xid/0ixfgt46t1bkc5e-xvwdlm

Algebraic Functions (4)
Inverse Fourier cosine transform of power functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-03wsfk

For integer , the result is a derivative of DiracDelta:

https://wolfram.com/xid/0ixfgt46t1bkc5e-vpq0lw

Inverse cosine transforms for rational functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-owg679


https://wolfram.com/xid/0ixfgt46t1bkc5e-0m3rlo


https://wolfram.com/xid/0ixfgt46t1bkc5e-boyow9


https://wolfram.com/xid/0ixfgt46t1bkc5e-zjzb5g

Inverse Fourier cosine transform of a quotient of two nonlinear polynomials:

https://wolfram.com/xid/0ixfgt46t1bkc5e-rhkhqy


https://wolfram.com/xid/0ixfgt46t1bkc5e-i0umyu

Inverse Fourier cosine transform of a quotient of quadratic and quartic polynomials:

https://wolfram.com/xid/0ixfgt46t1bkc5e-jk9mm7


https://wolfram.com/xid/0ixfgt46t1bkc5e-z67hdo

Exponential and Logarithmic Functions (4)
Inverse Fourier cosine transforms of exponential functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-52om8r


https://wolfram.com/xid/0ixfgt46t1bkc5e-1disjo


https://wolfram.com/xid/0ixfgt46t1bkc5e-wu1agn

Inverse Fourier cosine transform of a Gaussian is itself:

https://wolfram.com/xid/0ixfgt46t1bkc5e-yxcp1n


https://wolfram.com/xid/0ixfgt46t1bkc5e-o1ry2p

Inverse Fourier cosine transforms of products of exponential and trigonometric functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-gygzn3


https://wolfram.com/xid/0ixfgt46t1bkc5e-sxteev


https://wolfram.com/xid/0ixfgt46t1bkc5e-jw3ubt


https://wolfram.com/xid/0ixfgt46t1bkc5e-3pnitz

Inverse cosine transforms of logarithmic functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-rgdsei


https://wolfram.com/xid/0ixfgt46t1bkc5e-td0odr


https://wolfram.com/xid/0ixfgt46t1bkc5e-w54qvj


https://wolfram.com/xid/0ixfgt46t1bkc5e-f7hcbj


https://wolfram.com/xid/0ixfgt46t1bkc5e-xhk2s9


https://wolfram.com/xid/0ixfgt46t1bkc5e-x5had8


https://wolfram.com/xid/0ixfgt46t1bkc5e-8db6mb


https://wolfram.com/xid/0ixfgt46t1bkc5e-dhseml

Trigonometric Functions (5)
Expressions involving trigonometric functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-i8awco


https://wolfram.com/xid/0ixfgt46t1bkc5e-lsavef

Composition of elementary functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-je3yjb


https://wolfram.com/xid/0ixfgt46t1bkc5e-joqlym

Ratio of sine and product of exponential and linear functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-e6j8h1


https://wolfram.com/xid/0ixfgt46t1bkc5e-oosste

Inverse Fourier cosine transforms of arctangent functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-5g6245


https://wolfram.com/xid/0ixfgt46t1bkc5e-i55usn


https://wolfram.com/xid/0ixfgt46t1bkc5e-hz75d7


https://wolfram.com/xid/0ixfgt46t1bkc5e-xxlo3y

Inverse Fourier cosine transform of Sech is another Sech:

https://wolfram.com/xid/0ixfgt46t1bkc5e-73qucu


https://wolfram.com/xid/0ixfgt46t1bkc5e-09awln

Special Functions (9)
Sinc function:

https://wolfram.com/xid/0ixfgt46t1bkc5e-0gsyhj


https://wolfram.com/xid/0ixfgt46t1bkc5e-vo1vn2

Inverse Fourier cosine transforms of expressions involving ExpIntegralEi:

https://wolfram.com/xid/0ixfgt46t1bkc5e-tjtvu1


https://wolfram.com/xid/0ixfgt46t1bkc5e-cwbop2


https://wolfram.com/xid/0ixfgt46t1bkc5e-cg821z


https://wolfram.com/xid/0ixfgt46t1bkc5e-j66x5w

Expression involving Erfc:

https://wolfram.com/xid/0ixfgt46t1bkc5e-vn2eoq


https://wolfram.com/xid/0ixfgt46t1bkc5e-m91upc

Expression involving SinIntegral:

https://wolfram.com/xid/0ixfgt46t1bkc5e-005pa8


https://wolfram.com/xid/0ixfgt46t1bkc5e-7j47yl


https://wolfram.com/xid/0ixfgt46t1bkc5e-yznez4


https://wolfram.com/xid/0ixfgt46t1bkc5e-ujv0fk

Inverse cosine transforms for BesselJ functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-gfwe8v


https://wolfram.com/xid/0ixfgt46t1bkc5e-fzv48


https://wolfram.com/xid/0ixfgt46t1bkc5e-25dsem


https://wolfram.com/xid/0ixfgt46t1bkc5e-5ikc3a


https://wolfram.com/xid/0ixfgt46t1bkc5e-pu9nv5


https://wolfram.com/xid/0ixfgt46t1bkc5e-oujib3


https://wolfram.com/xid/0ixfgt46t1bkc5e-0udjyo


https://wolfram.com/xid/0ixfgt46t1bkc5e-ucezzb

Cosine transforms for BesselY functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-jfd8tm


https://wolfram.com/xid/0ixfgt46t1bkc5e-f8qei2


https://wolfram.com/xid/0ixfgt46t1bkc5e-u2q3vd


https://wolfram.com/xid/0ixfgt46t1bkc5e-z955xt

Cosine transform for a BesselK function:

https://wolfram.com/xid/0ixfgt46t1bkc5e-h3rjaf


https://wolfram.com/xid/0ixfgt46t1bkc5e-2xs9p4

Inverse cosine transform for a hypergeometric function is a BesselK function:

https://wolfram.com/xid/0ixfgt46t1bkc5e-z8l7t


https://wolfram.com/xid/0ixfgt46t1bkc5e-9br70g

Piecewise Functions and Distributions (4)
Inverse Fourier cosine transform of a piecewise function:

https://wolfram.com/xid/0ixfgt46t1bkc5e-vbyfpc


https://wolfram.com/xid/0ixfgt46t1bkc5e-gzj53a

Restriction of a sine function to a half-period:

https://wolfram.com/xid/0ixfgt46t1bkc5e-k1cfgv


https://wolfram.com/xid/0ixfgt46t1bkc5e-trakg


https://wolfram.com/xid/0ixfgt46t1bkc5e-oa5djc


https://wolfram.com/xid/0ixfgt46t1bkc5e-osuoi6

Transforms in terms of FresnelC:

https://wolfram.com/xid/0ixfgt46t1bkc5e-3vutk1


https://wolfram.com/xid/0ixfgt46t1bkc5e-fye5aq


https://wolfram.com/xid/0ixfgt46t1bkc5e-u5hicw


https://wolfram.com/xid/0ixfgt46t1bkc5e-l8c2cs

Periodic Functions (2)
Inverse Fourier cosine transform of cosine:

https://wolfram.com/xid/0ixfgt46t1bkc5e-2zaqf7

Inverse Fourier cosine transform of SquareWave:

https://wolfram.com/xid/0ixfgt46t1bkc5e-sqc6g2


https://wolfram.com/xid/0ixfgt46t1bkc5e-58nn6p

Generalized Functions (4)
Inverse Fourier cosine transforms of expressions involving HeavisideTheta:

https://wolfram.com/xid/0ixfgt46t1bkc5e-2tevp7


https://wolfram.com/xid/0ixfgt46t1bkc5e-d1wzw8


https://wolfram.com/xid/0ixfgt46t1bkc5e-wyvw1c


https://wolfram.com/xid/0ixfgt46t1bkc5e-5fwoi9


https://wolfram.com/xid/0ixfgt46t1bkc5e-wqr4mf


https://wolfram.com/xid/0ixfgt46t1bkc5e-2y7g21

Inverse Fourier cosine transform involving DiracDelta:

https://wolfram.com/xid/0ixfgt46t1bkc5e-r31kfb


https://wolfram.com/xid/0ixfgt46t1bkc5e-nz7s7k


https://wolfram.com/xid/0ixfgt46t1bkc5e-wwl2jr


https://wolfram.com/xid/0ixfgt46t1bkc5e-qk22x4


https://wolfram.com/xid/0ixfgt46t1bkc5e-dq9yjh


https://wolfram.com/xid/0ixfgt46t1bkc5e-rowycp

Inverse Fourier cosine transform involving HeavisideLambda:

https://wolfram.com/xid/0ixfgt46t1bkc5e-o6dexh


https://wolfram.com/xid/0ixfgt46t1bkc5e-v8ub3l

Inverse Fourier cosine transform involving HeavisidePi:

https://wolfram.com/xid/0ixfgt46t1bkc5e-venbbr


https://wolfram.com/xid/0ixfgt46t1bkc5e-zqm430

Multivariate Functions (3)
Inverse Fourier cosine transform of rational function in two variables:

https://wolfram.com/xid/0ixfgt46t1bkc5e-qs7sar


https://wolfram.com/xid/0ixfgt46t1bkc5e-yq48d0

Inverse Fourier cosine transform of exponential in two variables:

https://wolfram.com/xid/0ixfgt46t1bkc5e-ibiugp


https://wolfram.com/xid/0ixfgt46t1bkc5e-oifrh3

Inverse Fourier cosine transform of product of exponential and SquareWave:

https://wolfram.com/xid/0ixfgt46t1bkc5e-xn92xb


https://wolfram.com/xid/0ixfgt46t1bkc5e-szbms4

Formal Properties (3)
Inverse Fourier cosine transform of a first-order derivative:

https://wolfram.com/xid/0ixfgt46t1bkc5e-6y33or

Inverse Fourier cosine transform of a second-order derivative:

https://wolfram.com/xid/0ixfgt46t1bkc5e-skw3qo

Inverse Fourier cosine transform threads itself over equations:

https://wolfram.com/xid/0ixfgt46t1bkc5e-iopmwm

Numerical Evaluation (2)
Calculate the inverse Fourier cosine transform at a single point:

https://wolfram.com/xid/0ixfgt46t1bkc5e-7k0h22

Alternatively, calculate the Fourier cosine transform symbolically:

https://wolfram.com/xid/0ixfgt46t1bkc5e-tjwigl

Then evaluate it for specific value of :

https://wolfram.com/xid/0ixfgt46t1bkc5e-7r1zof

Options (8)Common values & functionality for each option
AccuracyGoal (1)
The option AccuracyGoal sets the number of digits of accuracy:

https://wolfram.com/xid/0ixfgt46t1bkc5e-5ymjb


https://wolfram.com/xid/0ixfgt46t1bkc5e-f6u3ua


https://wolfram.com/xid/0ixfgt46t1bkc5e-0fses

Assumptions (1)
Use Assumptions to indicate the region of interest for the parameters:

https://wolfram.com/xid/0ixfgt46t1bkc5e-nagwk1


https://wolfram.com/xid/0ixfgt46t1bkc5e-fk9tc3

FourierParameters (3)
Inverse Fourier cosine transform for the unit box function with different parameters:

Use a nondefault setting for a different definition of transform:

https://wolfram.com/xid/0ixfgt46t1bkc5e-ejscab

To get the original function back, use the same FourierParameters setting:

https://wolfram.com/xid/0ixfgt46t1bkc5e-x9j3p

Set up your particular global choice of parameters to work once per session:

https://wolfram.com/xid/0ixfgt46t1bkc5e-p5uq9c


https://wolfram.com/xid/0ixfgt46t1bkc5e-qntpci


https://wolfram.com/xid/0ixfgt46t1bkc5e-8p4bec

GenerateConditions (1)
Use GenerateConditionsTrue to get parameter conditions for when a result is valid:

https://wolfram.com/xid/0ixfgt46t1bkc5e-dosv41

PrecisionGoal (1)
The option PrecisionGoal sets the relative tolerance in the integration:

https://wolfram.com/xid/0ixfgt46t1bkc5e-n3x5d0


https://wolfram.com/xid/0ixfgt46t1bkc5e-9119x


https://wolfram.com/xid/0ixfgt46t1bkc5e-b3dg8e

WorkingPrecision (1)
If a WorkingPrecision is specified, the computation is done at that working precision:

https://wolfram.com/xid/0ixfgt46t1bkc5e-c6xb9r


https://wolfram.com/xid/0ixfgt46t1bkc5e-duvdjv


https://wolfram.com/xid/0ixfgt46t1bkc5e-f3d1p1

Applications (4)Sample problems that can be solved with this function
Ordinary Differential Equations (1)
Consider the following ODE with initial condition :

https://wolfram.com/xid/0ixfgt46t1bkc5e-7nyko5
Apply the Fourier cosine transform to the ODE:

https://wolfram.com/xid/0ixfgt46t1bkc5e-vneovh

Solve for the Fourier cosine transform of :

https://wolfram.com/xid/0ixfgt46t1bkc5e-o8i7eo

Find the inverse Fourier cosine transform with and
:

https://wolfram.com/xid/0ixfgt46t1bkc5e-o2vnsc

Compare with DSolveValue:

https://wolfram.com/xid/0ixfgt46t1bkc5e-p6a0xe

Partial Differential Equations (1)
Solve the heat equation for ,
:
with initial condition
for
and Neumann boundary condition
for
:

https://wolfram.com/xid/0ixfgt46t1bkc5e-px64a0
Apply the Fourier cosine transform to the ODE on :

https://wolfram.com/xid/0ixfgt46t1bkc5e-2kme07


https://wolfram.com/xid/0ixfgt46t1bkc5e-ehtvs7

Compute the inverse cosine transform of the exponential functions:

https://wolfram.com/xid/0ixfgt46t1bkc5e-ccx48j
Convolution property gives the inverse cosine transform of the first summand to get the solution:

https://wolfram.com/xid/0ixfgt46t1bkc5e-h6hd7

Consider the special case with ,
and
:

https://wolfram.com/xid/0ixfgt46t1bkc5e-jgjd13

Compare with DSolveValue:

https://wolfram.com/xid/0ixfgt46t1bkc5e-dkim4w

Plot the initial conditions and solutions for different values of .

https://wolfram.com/xid/0ixfgt46t1bkc5e-t3wb9i

Evaluation of Integrals (2)
Calculate the following definite integral:

https://wolfram.com/xid/0ixfgt46t1bkc5e-mvl6f4

Inverse Fourier cosine transform preserves integration of products over :

https://wolfram.com/xid/0ixfgt46t1bkc5e-0i61ex


https://wolfram.com/xid/0ixfgt46t1bkc5e-gojuf4

Compare with Integrate:

https://wolfram.com/xid/0ixfgt46t1bkc5e-8yvy61

Calculate the following definite integral for :

https://wolfram.com/xid/0ixfgt46t1bkc5e-xpx1az

Compute inverse fourier cosine transform of the square root of the integrand:

https://wolfram.com/xid/0ixfgt46t1bkc5e-g76rkm


https://wolfram.com/xid/0ixfgt46t1bkc5e-l3jwfg


https://wolfram.com/xid/0ixfgt46t1bkc5e-5w5yeo

Solve for the definite integral:

https://wolfram.com/xid/0ixfgt46t1bkc5e-y2ew8h

Compare with Integrate:

https://wolfram.com/xid/0ixfgt46t1bkc5e-e84l8t

Properties & Relations (4)Properties of the function, and connections to other functions
By default, the inverse Fourier cosine transform of is:

https://wolfram.com/xid/0ixfgt46t1bkc5e-hskcwe

For , the definite integral becomes:

https://wolfram.com/xid/0ixfgt46t1bkc5e-12m121

Compare with InverseFourierCosTransform:

https://wolfram.com/xid/0ixfgt46t1bkc5e-zlwqzc

Use Asymptotic to compute an asymptotic approximation:

https://wolfram.com/xid/0ixfgt46t1bkc5e-lwbzos

FourierCosTransform and InverseFourierCosTransform are mutual inverses:

https://wolfram.com/xid/0ixfgt46t1bkc5e-bp78fy


https://wolfram.com/xid/0ixfgt46t1bkc5e-bhj9ka


https://wolfram.com/xid/0ixfgt46t1bkc5e-it7bfn


https://wolfram.com/xid/0ixfgt46t1bkc5e-byd6ra

For even functions results are identical to InverseFourierTransform:

https://wolfram.com/xid/0ixfgt46t1bkc5e-juanwx


https://wolfram.com/xid/0ixfgt46t1bkc5e-ib6ihh


https://wolfram.com/xid/0ixfgt46t1bkc5e-b2ebmr

Possible Issues (1)Common pitfalls and unexpected behavior
The result from a Fourier cosine transform may not have the same form as the original:

https://wolfram.com/xid/0ixfgt46t1bkc5e-jod215


https://wolfram.com/xid/0ixfgt46t1bkc5e-19v81k

Inverse Fourier cosine transforms may require generalized functions such as DiracDelta:

https://wolfram.com/xid/0ixfgt46t1bkc5e-mjrqa7


https://wolfram.com/xid/0ixfgt46t1bkc5e-f2qo5e

Neat Examples (2)Surprising or curious use cases
Wolfram Research (1999), InverseFourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html (updated 2025).
Text
Wolfram Research (1999), InverseFourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html (updated 2025).
Wolfram Research (1999), InverseFourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html (updated 2025).
CMS
Wolfram Language. 1999. "InverseFourierCosTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html.
Wolfram Language. 1999. "InverseFourierCosTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html.
APA
Wolfram Language. (1999). InverseFourierCosTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html
Wolfram Language. (1999). InverseFourierCosTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html
BibTeX
@misc{reference.wolfram_2025_inversefouriercostransform, author="Wolfram Research", title="{InverseFourierCosTransform}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html}", note=[Accessed: 11-July-2025
]}
BibLaTeX
@online{reference.wolfram_2025_inversefouriercostransform, organization={Wolfram Research}, title={InverseFourierCosTransform}, year={2025}, url={https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html}, note=[Accessed: 11-July-2025
]}