InverseLaplaceTransform
✖
InverseLaplaceTransform
更多信息和选项


- 拉普拉斯变换通常用于将微分和偏微分方程转换为代数方程,对方程求解,然后进行逆变换,从而得到解.
- 拉普拉斯变换还广泛用于控制理论和信号处理,作为以传递函数和传递矩阵的形式表示和操纵线性系统的一种方式. 拉普拉斯变换及其逆变换是时域和频域之间变换的一种方式.
- 函数
的拉普拉斯逆变换定义成
,其中 γ 是任意选择的正常数,该常数使得积分的围道位于
的所有奇点的右边.
- 函数
的多维拉普拉斯逆变换由形为
的围道积分给出.
- 如果赋给第三个参数
的是数值,则使用数值法计算积分. 可用的方法包括:"Crump"、"Durbin"、"Papoulis"、"Piessens"、"Stehfest"、"Talbot" 和 "Weeks".
- 可用 Asymptotic 计算渐近拉普拉斯逆变换.
- 可给出以下选项:
-
AccuracyGoal Automatic 追求的绝对准确度 Assumptions $Assumptions 对参数的设定 GenerateConditions False 是否给出涉及参数条件的答案 Method Automatic 所用的方法 PerformanceGoal $PerformanceGoal 优化的目标 PrecisionGoal Automatic 追求的精度 WorkingPrecision Automatic 内部计算使用的精度 - 在 TraditionalForm 中,InverseLaplaceTransform 用 ℒ-1 输出. »

范例
打开所有单元关闭所有单元基本范例 (4)常见实例总结

https://wolfram.com/xid/0fq6i7sjk0ryq-fhff8p


https://wolfram.com/xid/0fq6i7sjk0ryq-59nrf9


https://wolfram.com/xid/0fq6i7sjk0ryq-yzxytk


https://wolfram.com/xid/0fq6i7sjk0ryq-jbxqa


https://wolfram.com/xid/0fq6i7sjk0ryq-5bmfp

范围 (56)标准用法实例范围调查
基本用法 (3)

https://wolfram.com/xid/0fq6i7sjk0ryq-2gnvu0


https://wolfram.com/xid/0fq6i7sjk0ryq-b9em71

TraditionalForm 格式:

https://wolfram.com/xid/0fq6i7sjk0ryq-ne4loa

有理函数 (5)

https://wolfram.com/xid/0fq6i7sjk0ryq-c3302p


https://wolfram.com/xid/0fq6i7sjk0ryq-fpzi8h


https://wolfram.com/xid/0fq6i7sjk0ryq-gv2crh


https://wolfram.com/xid/0fq6i7sjk0ryq-yyegq6


https://wolfram.com/xid/0fq6i7sjk0ryq-4e3btq


https://wolfram.com/xid/0fq6i7sjk0ryq-ybk7wh


https://wolfram.com/xid/0fq6i7sjk0ryq-y13zg0


https://wolfram.com/xid/0fq6i7sjk0ryq-8otc5n


https://wolfram.com/xid/0fq6i7sjk0ryq-ix1niz

初等函数 (5)

https://wolfram.com/xid/0fq6i7sjk0ryq-tgq72d


https://wolfram.com/xid/0fq6i7sjk0ryq-p3xbjs


https://wolfram.com/xid/0fq6i7sjk0ryq-l8h6dl


https://wolfram.com/xid/0fq6i7sjk0ryq-1pb22x


https://wolfram.com/xid/0fq6i7sjk0ryq-zlgvxo


https://wolfram.com/xid/0fq6i7sjk0ryq-xlvn6z

对数函数 (4)

https://wolfram.com/xid/0fq6i7sjk0ryq-tojuvc


https://wolfram.com/xid/0fq6i7sjk0ryq-l6lmlg


https://wolfram.com/xid/0fq6i7sjk0ryq-e77uka


https://wolfram.com/xid/0fq6i7sjk0ryq-0v9ub1


https://wolfram.com/xid/0fq6i7sjk0ryq-3ulzeu

特殊函数 (12)
涉及 BesselK 的函数:

https://wolfram.com/xid/0fq6i7sjk0ryq-gef76b


https://wolfram.com/xid/0fq6i7sjk0ryq-m98m4k


https://wolfram.com/xid/0fq6i7sjk0ryq-jdyrkq


https://wolfram.com/xid/0fq6i7sjk0ryq-546lno


https://wolfram.com/xid/0fq6i7sjk0ryq-cp62kr


https://wolfram.com/xid/0fq6i7sjk0ryq-dm4haw


https://wolfram.com/xid/0fq6i7sjk0ryq-4q7drp


https://wolfram.com/xid/0fq6i7sjk0ryq-9sif


https://wolfram.com/xid/0fq6i7sjk0ryq-2f1uap


https://wolfram.com/xid/0fq6i7sjk0ryq-8blp9s

频域函数的 ComplexPlot:

https://wolfram.com/xid/0fq6i7sjk0ryq-3owdqg


https://wolfram.com/xid/0fq6i7sjk0ryq-utc6l0

频域函数的 ComplexPlot:

https://wolfram.com/xid/0fq6i7sjk0ryq-z3xqx8


https://wolfram.com/xid/0fq6i7sjk0ryq-bn59ie

两个 ParabolicCylinderD 函数的积:

https://wolfram.com/xid/0fq6i7sjk0ryq-e9buuu


https://wolfram.com/xid/0fq6i7sjk0ryq-3x1bf6


https://wolfram.com/xid/0fq6i7sjk0ryq-dd6bxd

EllipticTheta 的逆变换:

https://wolfram.com/xid/0fq6i7sjk0ryq-0xqfuj

分段函数 (5)

https://wolfram.com/xid/0fq6i7sjk0ryq-k1zr0b


https://wolfram.com/xid/0fq6i7sjk0ryq-bowm61


https://wolfram.com/xid/0fq6i7sjk0ryq-05zh33


https://wolfram.com/xid/0fq6i7sjk0ryq-he2cy3


https://wolfram.com/xid/0fq6i7sjk0ryq-wzkeeg


https://wolfram.com/xid/0fq6i7sjk0ryq-7aunad


https://wolfram.com/xid/0fq6i7sjk0ryq-vtn9ua


https://wolfram.com/xid/0fq6i7sjk0ryq-evupmb


https://wolfram.com/xid/0fq6i7sjk0ryq-igtiwy


https://wolfram.com/xid/0fq6i7sjk0ryq-0khawj


https://wolfram.com/xid/0fq6i7sjk0ryq-tq5lg8

https://wolfram.com/xid/0fq6i7sjk0ryq-e8r875

周期函数 (4)

https://wolfram.com/xid/0fq6i7sjk0ryq-fikkiu


https://wolfram.com/xid/0fq6i7sjk0ryq-cat0fz


https://wolfram.com/xid/0fq6i7sjk0ryq-rnnq44


https://wolfram.com/xid/0fq6i7sjk0ryq-8g4xss


https://wolfram.com/xid/0fq6i7sjk0ryq-i8g5ya


https://wolfram.com/xid/0fq6i7sjk0ryq-2yl25o


https://wolfram.com/xid/0fq6i7sjk0ryq-6b8mvp


https://wolfram.com/xid/0fq6i7sjk0ryq-m3bqep


https://wolfram.com/xid/0fq6i7sjk0ryq-qi7ocr

广义函数 (3)
多变量函数 (8)

https://wolfram.com/xid/0fq6i7sjk0ryq-lx4d5z


https://wolfram.com/xid/0fq6i7sjk0ryq-y1c3l4


https://wolfram.com/xid/0fq6i7sjk0ryq-wefdfi


https://wolfram.com/xid/0fq6i7sjk0ryq-v2fydh

逆变换与 BesselJ 有关的有理函数:

https://wolfram.com/xid/0fq6i7sjk0ryq-k7isiq


https://wolfram.com/xid/0fq6i7sjk0ryq-02u034


https://wolfram.com/xid/0fq6i7sjk0ryq-zebwoi


https://wolfram.com/xid/0fq6i7sjk0ryq-x9pmtf


https://wolfram.com/xid/0fq6i7sjk0ryq-54berv

数值逆变换 (4)

https://wolfram.com/xid/0fq6i7sjk0ryq-wbhl8o


https://wolfram.com/xid/0fq6i7sjk0ryq-t0h9lt


https://wolfram.com/xid/0fq6i7sjk0ryq-ud7gdr


https://wolfram.com/xid/0fq6i7sjk0ryq-c9g5v0

https://wolfram.com/xid/0fq6i7sjk0ryq-vhzeg


https://wolfram.com/xid/0fq6i7sjk0ryq-323ht7


https://wolfram.com/xid/0fq6i7sjk0ryq-4gi4ts

https://wolfram.com/xid/0fq6i7sjk0ryq-bisaqn


https://wolfram.com/xid/0fq6i7sjk0ryq-faewg8


https://wolfram.com/xid/0fq6i7sjk0ryq-lxi203

https://wolfram.com/xid/0fq6i7sjk0ryq-imbbi8


https://wolfram.com/xid/0fq6i7sjk0ryq-cxwn69

分数阶微积分 (3)
域中代数函数的 ComplexPlot:

https://wolfram.com/xid/0fq6i7sjk0ryq-9fi54c


https://wolfram.com/xid/0fq6i7sjk0ryq-za6ksr


https://wolfram.com/xid/0fq6i7sjk0ryq-mp79e


https://wolfram.com/xid/0fq6i7sjk0ryq-0eyt13


https://wolfram.com/xid/0fq6i7sjk0ryq-i7c429


https://wolfram.com/xid/0fq6i7sjk0ryq-yy2tpu


https://wolfram.com/xid/0fq6i7sjk0ryq-c7xb8b


https://wolfram.com/xid/0fq6i7sjk0ryq-kna0xr

选项 (3)各选项的常用值和功能
GenerateConditions (1)
默认情况下,InverseLaplaceTransform 假定结果是针对非负 t 定义的:

https://wolfram.com/xid/0fq6i7sjk0ryq-cdrh76

用 GenerateConditions 获取结果有效的范围:

https://wolfram.com/xid/0fq6i7sjk0ryq-f0o7x9


https://wolfram.com/xid/0fq6i7sjk0ryq-e7xhx4

Method (1)

https://wolfram.com/xid/0fq6i7sjk0ryq-h669vv

用 Method 获取不同方法得到的结果:

https://wolfram.com/xid/0fq6i7sjk0ryq-2y1mb

Working Precision (1)
用 WorkingPrecision 获取任意精度的结果:

https://wolfram.com/xid/0fq6i7sjk0ryq-c39693


https://wolfram.com/xid/0fq6i7sjk0ryq-c045kl


https://wolfram.com/xid/0fq6i7sjk0ryq-bvx7tg

应用 (5)用该函数可以解决的问题范例

https://wolfram.com/xid/0fq6i7sjk0ryq-egu3y9


https://wolfram.com/xid/0fq6i7sjk0ryq-hz30xf


https://wolfram.com/xid/0fq6i7sjk0ryq-xr0


https://wolfram.com/xid/0fq6i7sjk0ryq-cuv


https://wolfram.com/xid/0fq6i7sjk0ryq-x4t


https://wolfram.com/xid/0fq6i7sjk0ryq-jkk333

用 DSolve 直接求解:

https://wolfram.com/xid/0fq6i7sjk0ryq-x8v


https://wolfram.com/xid/0fq6i7sjk0ryq-t203k


https://wolfram.com/xid/0fq6i7sjk0ryq-5yhytr

https://wolfram.com/xid/0fq6i7sjk0ryq-8g7evs


https://wolfram.com/xid/0fq6i7sjk0ryq-203z1c


https://wolfram.com/xid/0fq6i7sjk0ryq-oepin2

用 DSolve 直接求解:

https://wolfram.com/xid/0fq6i7sjk0ryq-iiovhh


https://wolfram.com/xid/0fq6i7sjk0ryq-th8xc7


https://wolfram.com/xid/0fq6i7sjk0ryq-2udh5o


https://wolfram.com/xid/0fq6i7sjk0ryq-yf5n2h


https://wolfram.com/xid/0fq6i7sjk0ryq-g6ko7g

用 DSolve 直接求解:

https://wolfram.com/xid/0fq6i7sjk0ryq-mzd8ky

用 LaplaceTransform 求解分数阶微分方程组:

https://wolfram.com/xid/0fq6i7sjk0ryq-ykvla5


https://wolfram.com/xid/0fq6i7sjk0ryq-gmiy1x

属性和关系 (2)函数的属性及与其他函数的关联
用 Asymptotic 计算渐近近似:

https://wolfram.com/xid/0fq6i7sjk0ryq-w0sef

InverseLaplaceTransform 和 LaplaceTransform 是互逆的:

https://wolfram.com/xid/0fq6i7sjk0ryq-bf3zt1


https://wolfram.com/xid/0fq6i7sjk0ryq-4dn9t


https://wolfram.com/xid/0fq6i7sjk0ryq-it7bfn


https://wolfram.com/xid/0fq6i7sjk0ryq-byd6ra

巧妙范例 (2)奇妙或有趣的实例
一个 MeijerG 函数的 InverseLaplaceTransform:

https://wolfram.com/xid/0fq6i7sjk0ryq-ehq2ks


https://wolfram.com/xid/0fq6i7sjk0ryq-nlrdis

https://wolfram.com/xid/0fq6i7sjk0ryq-es2bp2

Wolfram Research (1999),InverseLaplaceTransform,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (更新于 2023 年).
文本
Wolfram Research (1999),InverseLaplaceTransform,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (更新于 2023 年).
Wolfram Research (1999),InverseLaplaceTransform,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (更新于 2023 年).
CMS
Wolfram 语言. 1999. "InverseLaplaceTransform." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.
Wolfram 语言. 1999. "InverseLaplaceTransform." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.
APA
Wolfram 语言. (1999). InverseLaplaceTransform. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html 年
Wolfram 语言. (1999). InverseLaplaceTransform. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html 年
BibTeX
@misc{reference.wolfram_2025_inverselaplacetransform, author="Wolfram Research", title="{InverseLaplaceTransform}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}", note=[Accessed: 03-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_inverselaplacetransform, organization={Wolfram Research}, title={InverseLaplaceTransform}, year={2023}, url={https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html}, note=[Accessed: 03-April-2025
]}