InverseLaplaceTransform
InverseLaplaceTransform[F[s],s,t]
给出以 s 为变量的 F[s] 的以 t 为变量的符号拉普拉斯逆变换 f[t].
InverseLaplaceTransform[F[s],s,]
给出数值 处的数值拉普拉斯逆变换.
InverseLaplaceTransform[F[s1,…,sn],{s1,s2,…},{t1,t2,…}]
给出 F[s1,…,sn] 的多维拉普拉斯逆变换.
更多信息和选项


- 拉普拉斯变换通常用于将微分和偏微分方程转换为代数方程,对方程求解,然后进行逆变换,从而得到解.
- 拉普拉斯变换还广泛用于控制理论和信号处理,作为以传递函数和传递矩阵的形式表示和操纵线性系统的一种方式. 拉普拉斯变换及其逆变换是时域和频域之间变换的一种方式.
- 函数
的拉普拉斯逆变换定义成
,其中 γ 是任意选择的正常数,该常数使得积分的围道位于
的所有奇点的右边.
- 函数
的多维拉普拉斯逆变换由形为
的围道积分给出.
- 如果赋给第三个参数
的是数值,则使用数值法计算积分. 可用的方法包括:"Crump"、"Durbin"、"Papoulis"、"Piessens"、"Stehfest"、"Talbot" 和 "Weeks".
- 可用 Asymptotic 计算渐近拉普拉斯逆变换.
- 可给出以下选项:
-
AccuracyGoal Automatic 追求的绝对准确度 Assumptions $Assumptions 对参数的设定 GenerateConditions False 是否给出涉及参数条件的答案 Method Automatic 所用的方法 PerformanceGoal $PerformanceGoal 优化的目标 PrecisionGoal Automatic 追求的精度 WorkingPrecision Automatic 内部计算使用的精度 - 在 TraditionalForm 中,InverseLaplaceTransform 用 ℒ-1 输出. »

范例
打开所有单元关闭所有单元基本范例 (4)常见实例总结

https://wolfram.com/xid/0fq6i7sjk0ryq-fhff8p

https://wolfram.com/xid/0fq6i7sjk0ryq-59nrf9

https://wolfram.com/xid/0fq6i7sjk0ryq-yzxytk

https://wolfram.com/xid/0fq6i7sjk0ryq-jbxqa

https://wolfram.com/xid/0fq6i7sjk0ryq-5bmfp
范围 (56)标准用法实例范围调查
基本用法 (3)

https://wolfram.com/xid/0fq6i7sjk0ryq-2gnvu0

https://wolfram.com/xid/0fq6i7sjk0ryq-b9em71
TraditionalForm 格式:

https://wolfram.com/xid/0fq6i7sjk0ryq-ne4loa
有理函数 (5)

https://wolfram.com/xid/0fq6i7sjk0ryq-c3302p

https://wolfram.com/xid/0fq6i7sjk0ryq-fpzi8h

https://wolfram.com/xid/0fq6i7sjk0ryq-gv2crh

https://wolfram.com/xid/0fq6i7sjk0ryq-yyegq6

https://wolfram.com/xid/0fq6i7sjk0ryq-4e3btq

https://wolfram.com/xid/0fq6i7sjk0ryq-ybk7wh

https://wolfram.com/xid/0fq6i7sjk0ryq-y13zg0

https://wolfram.com/xid/0fq6i7sjk0ryq-8otc5n

https://wolfram.com/xid/0fq6i7sjk0ryq-ix1niz
初等函数 (5)

https://wolfram.com/xid/0fq6i7sjk0ryq-tgq72d

https://wolfram.com/xid/0fq6i7sjk0ryq-p3xbjs

https://wolfram.com/xid/0fq6i7sjk0ryq-l8h6dl

https://wolfram.com/xid/0fq6i7sjk0ryq-1pb22x

https://wolfram.com/xid/0fq6i7sjk0ryq-zlgvxo

https://wolfram.com/xid/0fq6i7sjk0ryq-xlvn6z
对数函数 (4)

https://wolfram.com/xid/0fq6i7sjk0ryq-tojuvc

https://wolfram.com/xid/0fq6i7sjk0ryq-l6lmlg

https://wolfram.com/xid/0fq6i7sjk0ryq-e77uka

https://wolfram.com/xid/0fq6i7sjk0ryq-0v9ub1

https://wolfram.com/xid/0fq6i7sjk0ryq-3ulzeu
特殊函数 (12)
涉及 BesselK 的函数:

https://wolfram.com/xid/0fq6i7sjk0ryq-gef76b

https://wolfram.com/xid/0fq6i7sjk0ryq-m98m4k

https://wolfram.com/xid/0fq6i7sjk0ryq-jdyrkq

https://wolfram.com/xid/0fq6i7sjk0ryq-546lno

https://wolfram.com/xid/0fq6i7sjk0ryq-cp62kr

https://wolfram.com/xid/0fq6i7sjk0ryq-dm4haw

https://wolfram.com/xid/0fq6i7sjk0ryq-4q7drp

https://wolfram.com/xid/0fq6i7sjk0ryq-9sif

https://wolfram.com/xid/0fq6i7sjk0ryq-2f1uap

https://wolfram.com/xid/0fq6i7sjk0ryq-8blp9s
频域函数的 ComplexPlot:

https://wolfram.com/xid/0fq6i7sjk0ryq-3owdqg

https://wolfram.com/xid/0fq6i7sjk0ryq-utc6l0
频域函数的 ComplexPlot:

https://wolfram.com/xid/0fq6i7sjk0ryq-z3xqx8

https://wolfram.com/xid/0fq6i7sjk0ryq-bn59ie
两个 ParabolicCylinderD 函数的积:

https://wolfram.com/xid/0fq6i7sjk0ryq-e9buuu

https://wolfram.com/xid/0fq6i7sjk0ryq-3x1bf6

https://wolfram.com/xid/0fq6i7sjk0ryq-dd6bxd
EllipticTheta 的逆变换:

https://wolfram.com/xid/0fq6i7sjk0ryq-0xqfuj
分段函数 (5)

https://wolfram.com/xid/0fq6i7sjk0ryq-k1zr0b

https://wolfram.com/xid/0fq6i7sjk0ryq-bowm61

https://wolfram.com/xid/0fq6i7sjk0ryq-05zh33

https://wolfram.com/xid/0fq6i7sjk0ryq-he2cy3

https://wolfram.com/xid/0fq6i7sjk0ryq-wzkeeg

https://wolfram.com/xid/0fq6i7sjk0ryq-7aunad

https://wolfram.com/xid/0fq6i7sjk0ryq-vtn9ua

https://wolfram.com/xid/0fq6i7sjk0ryq-evupmb

https://wolfram.com/xid/0fq6i7sjk0ryq-igtiwy

https://wolfram.com/xid/0fq6i7sjk0ryq-0khawj

https://wolfram.com/xid/0fq6i7sjk0ryq-tq5lg8

https://wolfram.com/xid/0fq6i7sjk0ryq-e8r875
周期函数 (4)

https://wolfram.com/xid/0fq6i7sjk0ryq-fikkiu

https://wolfram.com/xid/0fq6i7sjk0ryq-cat0fz

https://wolfram.com/xid/0fq6i7sjk0ryq-rnnq44

https://wolfram.com/xid/0fq6i7sjk0ryq-8g4xss

https://wolfram.com/xid/0fq6i7sjk0ryq-i8g5ya

https://wolfram.com/xid/0fq6i7sjk0ryq-2yl25o

https://wolfram.com/xid/0fq6i7sjk0ryq-6b8mvp

https://wolfram.com/xid/0fq6i7sjk0ryq-m3bqep

https://wolfram.com/xid/0fq6i7sjk0ryq-qi7ocr
广义函数 (3)
多变量函数 (8)

https://wolfram.com/xid/0fq6i7sjk0ryq-lx4d5z

https://wolfram.com/xid/0fq6i7sjk0ryq-y1c3l4

https://wolfram.com/xid/0fq6i7sjk0ryq-wefdfi

https://wolfram.com/xid/0fq6i7sjk0ryq-v2fydh
逆变换与 BesselJ 有关的有理函数:

https://wolfram.com/xid/0fq6i7sjk0ryq-k7isiq

https://wolfram.com/xid/0fq6i7sjk0ryq-02u034

https://wolfram.com/xid/0fq6i7sjk0ryq-zebwoi

https://wolfram.com/xid/0fq6i7sjk0ryq-x9pmtf

https://wolfram.com/xid/0fq6i7sjk0ryq-54berv
数值逆变换 (4)

https://wolfram.com/xid/0fq6i7sjk0ryq-wbhl8o

https://wolfram.com/xid/0fq6i7sjk0ryq-t0h9lt

https://wolfram.com/xid/0fq6i7sjk0ryq-ud7gdr

https://wolfram.com/xid/0fq6i7sjk0ryq-c9g5v0

https://wolfram.com/xid/0fq6i7sjk0ryq-vhzeg

https://wolfram.com/xid/0fq6i7sjk0ryq-323ht7

https://wolfram.com/xid/0fq6i7sjk0ryq-4gi4ts

https://wolfram.com/xid/0fq6i7sjk0ryq-bisaqn

https://wolfram.com/xid/0fq6i7sjk0ryq-faewg8

https://wolfram.com/xid/0fq6i7sjk0ryq-lxi203

https://wolfram.com/xid/0fq6i7sjk0ryq-imbbi8

https://wolfram.com/xid/0fq6i7sjk0ryq-cxwn69
分数阶微积分 (3)
域中代数函数的 ComplexPlot:

https://wolfram.com/xid/0fq6i7sjk0ryq-9fi54c

https://wolfram.com/xid/0fq6i7sjk0ryq-za6ksr

https://wolfram.com/xid/0fq6i7sjk0ryq-mp79e

https://wolfram.com/xid/0fq6i7sjk0ryq-0eyt13

https://wolfram.com/xid/0fq6i7sjk0ryq-i7c429

https://wolfram.com/xid/0fq6i7sjk0ryq-yy2tpu

https://wolfram.com/xid/0fq6i7sjk0ryq-c7xb8b

https://wolfram.com/xid/0fq6i7sjk0ryq-kna0xr
选项 (3)各选项的常用值和功能
GenerateConditions (1)
默认情况下,InverseLaplaceTransform 假定结果是针对非负 t 定义的:

https://wolfram.com/xid/0fq6i7sjk0ryq-cdrh76
用 GenerateConditions 获取结果有效的范围:

https://wolfram.com/xid/0fq6i7sjk0ryq-f0o7x9

https://wolfram.com/xid/0fq6i7sjk0ryq-e7xhx4
Method (1)

https://wolfram.com/xid/0fq6i7sjk0ryq-h669vv
用 Method 获取不同方法得到的结果:

https://wolfram.com/xid/0fq6i7sjk0ryq-2y1mb
Working Precision (1)
用 WorkingPrecision 获取任意精度的结果:

https://wolfram.com/xid/0fq6i7sjk0ryq-c39693

https://wolfram.com/xid/0fq6i7sjk0ryq-c045kl

https://wolfram.com/xid/0fq6i7sjk0ryq-bvx7tg
应用 (5)用该函数可以解决的问题范例

https://wolfram.com/xid/0fq6i7sjk0ryq-egu3y9

https://wolfram.com/xid/0fq6i7sjk0ryq-hz30xf

https://wolfram.com/xid/0fq6i7sjk0ryq-xr0

https://wolfram.com/xid/0fq6i7sjk0ryq-cuv

https://wolfram.com/xid/0fq6i7sjk0ryq-x4t

https://wolfram.com/xid/0fq6i7sjk0ryq-jkk333
用 DSolve 直接求解:

https://wolfram.com/xid/0fq6i7sjk0ryq-x8v

https://wolfram.com/xid/0fq6i7sjk0ryq-t203k

https://wolfram.com/xid/0fq6i7sjk0ryq-5yhytr

https://wolfram.com/xid/0fq6i7sjk0ryq-8g7evs

https://wolfram.com/xid/0fq6i7sjk0ryq-203z1c

https://wolfram.com/xid/0fq6i7sjk0ryq-oepin2
用 DSolve 直接求解:

https://wolfram.com/xid/0fq6i7sjk0ryq-iiovhh

https://wolfram.com/xid/0fq6i7sjk0ryq-th8xc7

https://wolfram.com/xid/0fq6i7sjk0ryq-2udh5o

https://wolfram.com/xid/0fq6i7sjk0ryq-yf5n2h

https://wolfram.com/xid/0fq6i7sjk0ryq-g6ko7g
用 DSolve 直接求解:

https://wolfram.com/xid/0fq6i7sjk0ryq-mzd8ky
用 LaplaceTransform 求解分数阶微分方程组:

https://wolfram.com/xid/0fq6i7sjk0ryq-ykvla5

https://wolfram.com/xid/0fq6i7sjk0ryq-gmiy1x
属性和关系 (2)函数的属性及与其他函数的关联
用 Asymptotic 计算渐近近似:

https://wolfram.com/xid/0fq6i7sjk0ryq-w0sef
InverseLaplaceTransform 和 LaplaceTransform 是互逆的:

https://wolfram.com/xid/0fq6i7sjk0ryq-bf3zt1

https://wolfram.com/xid/0fq6i7sjk0ryq-4dn9t

https://wolfram.com/xid/0fq6i7sjk0ryq-it7bfn

https://wolfram.com/xid/0fq6i7sjk0ryq-byd6ra
巧妙范例 (2)奇妙或有趣的实例
一个 MeijerG 函数的 InverseLaplaceTransform:

https://wolfram.com/xid/0fq6i7sjk0ryq-ehq2ks

https://wolfram.com/xid/0fq6i7sjk0ryq-nlrdis

https://wolfram.com/xid/0fq6i7sjk0ryq-es2bp2
文本
Wolfram Research (1999),InverseLaplaceTransform,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html (更新于 2023 年).
CMS
Wolfram 语言. 1999. "InverseLaplaceTransform." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2023. https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html.
APA
Wolfram 语言. (1999). InverseLaplaceTransform. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/InverseLaplaceTransform.html 年