LogMultinormalDistribution

LogMultinormalDistribution[μ,Σ]

represents a log-multinormal distribution with parameters μ and Σ.

Details

Background & Context

Examples

open allclose all

Basic Examples  (4)

Probability density function:

Cumulative distribution function:

Mean and variance:

Covariance:

Scope  (6)

Generate a sample of pseudorandom vectors from a log-multinormal distribution:

Visualize the sample using a histogram:

Distribution parameters estimation:

Estimate the distribution parameters from sample data:

Goodness-of-fit test:

Skewness:

Limiting values:

Kurtosis:

Limiting values:

Hazard function:

Univariate marginals follow LogNormalDistribution:

Multivariate marginals follow a log-multinormal distribution:

Properties & Relations  (7)

Relationships to other distributions:

LogMultinormalDistribution is a transformation of MultinormalDistribution:

LogMultinormalDistribution is a transformation of BinormalDistribution:

One-dimensional marginal is LogNormalDistribution:

Special case with diagonal matrix is ProductDistribution of LogNormalDistribution:

LogMultinormalDistribution is related to LogNormalDistribution:

LogMultinormalDistribution is a slice distribution for GeometricBrownianMotionProcess:

Wolfram Research (2012), LogMultinormalDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/LogMultinormalDistribution.html.

Text

Wolfram Research (2012), LogMultinormalDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/LogMultinormalDistribution.html.

CMS

Wolfram Language. 2012. "LogMultinormalDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LogMultinormalDistribution.html.

APA

Wolfram Language. (2012). LogMultinormalDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LogMultinormalDistribution.html

BibTeX

@misc{reference.wolfram_2024_logmultinormaldistribution, author="Wolfram Research", title="{LogMultinormalDistribution}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/LogMultinormalDistribution.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_logmultinormaldistribution, organization={Wolfram Research}, title={LogMultinormalDistribution}, year={2012}, url={https://reference.wolfram.com/language/ref/LogMultinormalDistribution.html}, note=[Accessed: 21-January-2025 ]}