DiscreteLimit
✖
DiscreteLimit
更多信息和选项


- DiscreteLimit 亦称为离散极限或整数上的极限.
- DiscreteLimit 计算序列 f 当变量 k 或 ki 变得任意大时的极限值.
- 可用
f 来输入 DiscreteLimit[f,k∞]. 可用
dlim
来输入模板
,用
把光标从底部移动到主体.
- 可用
…
f 来输入 DiscreteLimit[f,{k1,…,kn}{
,…,
}].
的极限值为 ±∞.
- 对于有限值 f*:
-
DiscreteLimit[f,k∞]f* 对于每一个 ,有一个
,使得
实质蕴涵
DiscreteLimit[f,{k1,…,kn}{∞,…,∞}]f* 对于每一个 ,有一个
,使得
实质蕴涵
- DiscreteLimit[f[k],k-∞] 等价于 DiscreteLimit[f[-l],l∞] 等.
- 当可以证明极限不存在时,DiscreteLimit 返回 Indeterminate,如果无法找到极限,则不进行计算,直接返回.
- 可以给出下列选项:
-
Assumptions $Assumptions 对参数的假设 GenerateConditions Automatic 是否为参数生成条件 Method Automatic 所用的方法 PerformanceGoal "Quality" 优化的目标 - GenerateConditions 的可能设置包括:
-
Automatic 只汇报非通用条件 True 汇报所有条件 False 不汇报条件 None 如果需要条件,则不进行计算,直接返回 - PerformanceGoal 的可能设置包括 $PerformanceGoal、"Quality" 和 "Speed". 如果设置为 "Quality", DiscreteLimit 通常能求解更多问题或产生更简单的结果,但会需要更多时间和内存.

范例
打开所有单元关闭所有单元基本范例 (4)常见实例总结

https://wolfram.com/xid/0enzj0dsy-dab3pa


https://wolfram.com/xid/0enzj0dsy-naxyuq


https://wolfram.com/xid/0enzj0dsy-zhoqg


https://wolfram.com/xid/0enzj0dsy-k3ivv


https://wolfram.com/xid/0enzj0dsy-e1mcaw

TraditionalForm 排版:

https://wolfram.com/xid/0enzj0dsy-e82anr

范围 (37)标准用法实例范围调查
基本用法 (4)
计算当 n 趋近于 Infinity 时序列的极限:

https://wolfram.com/xid/0enzj0dsy-hb5uiw


https://wolfram.com/xid/0enzj0dsy-jenjxu

计算当 n 趋近于 -Infinity 时序列的极限:

https://wolfram.com/xid/0enzj0dsy-et7bpy


https://wolfram.com/xid/0enzj0dsy-pukp4y


https://wolfram.com/xid/0enzj0dsy-g45pgr

初等函数序列 (7)

https://wolfram.com/xid/0enzj0dsy-lxbke9


https://wolfram.com/xid/0enzj0dsy-c6vm2a


https://wolfram.com/xid/0enzj0dsy-q2dwr


https://wolfram.com/xid/0enzj0dsy-g2hriz


https://wolfram.com/xid/0enzj0dsy-fxkte2


https://wolfram.com/xid/0enzj0dsy-ek16lf


https://wolfram.com/xid/0enzj0dsy-kox3rp


https://wolfram.com/xid/0enzj0dsy-fh66s0


https://wolfram.com/xid/0enzj0dsy-e5uei


https://wolfram.com/xid/0enzj0dsy-dm6ege


https://wolfram.com/xid/0enzj0dsy-lykjl


https://wolfram.com/xid/0enzj0dsy-yzua9


https://wolfram.com/xid/0enzj0dsy-8qd0z


https://wolfram.com/xid/0enzj0dsy-i4pw3x


https://wolfram.com/xid/0enzj0dsy-bcko2g


https://wolfram.com/xid/0enzj0dsy-lnyf1f

整数函数序列 (5)

https://wolfram.com/xid/0enzj0dsy-d8pfbn

涉及 FactorialPower 的序列的极限:

https://wolfram.com/xid/0enzj0dsy-ftvybu


https://wolfram.com/xid/0enzj0dsy-lmqwqq

涉及 Factorial 的序列的极限:

https://wolfram.com/xid/0enzj0dsy-b7gjcw


https://wolfram.com/xid/0enzj0dsy-dqkc2t


https://wolfram.com/xid/0enzj0dsy-9co6a


https://wolfram.com/xid/0enzj0dsy-ha08jt

计算涉及 Fibonacci 和 LucasL 的序列的极限:

https://wolfram.com/xid/0enzj0dsy-bcqotc


https://wolfram.com/xid/0enzj0dsy-htkqx9


https://wolfram.com/xid/0enzj0dsy-2jx94


https://wolfram.com/xid/0enzj0dsy-fyr369

涉及 Pochhammer 的极限:

https://wolfram.com/xid/0enzj0dsy-8qnoq

交错序列 (3)

https://wolfram.com/xid/0enzj0dsy-l018j


https://wolfram.com/xid/0enzj0dsy-d9uwn4


https://wolfram.com/xid/0enzj0dsy-jt1djy


https://wolfram.com/xid/0enzj0dsy-e3j59y


https://wolfram.com/xid/0enzj0dsy-c2a9wn


https://wolfram.com/xid/0enzj0dsy-k4obt0

周期序列 (3)

https://wolfram.com/xid/0enzj0dsy-hug9t9


https://wolfram.com/xid/0enzj0dsy-gnytrw


https://wolfram.com/xid/0enzj0dsy-pb2vbj


https://wolfram.com/xid/0enzj0dsy-bpl1lb


https://wolfram.com/xid/0enzj0dsy-cpqsv5


https://wolfram.com/xid/0enzj0dsy-k12ere


https://wolfram.com/xid/0enzj0dsy-d7z025


https://wolfram.com/xid/0enzj0dsy-k07f3o


https://wolfram.com/xid/0enzj0dsy-lmhs11


https://wolfram.com/xid/0enzj0dsy-bzcdcc

分段函数序列 (3)

https://wolfram.com/xid/0enzj0dsy-vznig


https://wolfram.com/xid/0enzj0dsy-tz15g


https://wolfram.com/xid/0enzj0dsy-xejfm


https://wolfram.com/xid/0enzj0dsy-m4nvru


https://wolfram.com/xid/0enzj0dsy-d9ybuq


https://wolfram.com/xid/0enzj0dsy-skkms

涉及 Floor 的极限:

https://wolfram.com/xid/0enzj0dsy-ccscxv


https://wolfram.com/xid/0enzj0dsy-00nnb5

数论函数序列 (4)
计算涉及 Prime 的极限:

https://wolfram.com/xid/0enzj0dsy-c8zquf


https://wolfram.com/xid/0enzj0dsy-lasy8a


https://wolfram.com/xid/0enzj0dsy-kcv0us


https://wolfram.com/xid/0enzj0dsy-fq8b91

Prime 接近于 :

https://wolfram.com/xid/0enzj0dsy-fsldo


https://wolfram.com/xid/0enzj0dsy-v3pty

涉及 PrimePi 的极限:

https://wolfram.com/xid/0enzj0dsy-ctmzmi


https://wolfram.com/xid/0enzj0dsy-xsf9u


https://wolfram.com/xid/0enzj0dsy-7e7a


https://wolfram.com/xid/0enzj0dsy-b8nou9

PrimePi 接近于 :

https://wolfram.com/xid/0enzj0dsy-fuinb4


https://wolfram.com/xid/0enzj0dsy-qbv5vf

涉及 PartitionsP 和 PartitionsQ 的极限:

https://wolfram.com/xid/0enzj0dsy-gv4ho


https://wolfram.com/xid/0enzj0dsy-evj3r


https://wolfram.com/xid/0enzj0dsy-fiya71


https://wolfram.com/xid/0enzj0dsy-mdx71


https://wolfram.com/xid/0enzj0dsy-cl8agc


https://wolfram.com/xid/0enzj0dsy-f1s6nn


https://wolfram.com/xid/0enzj0dsy-ie03pn


https://wolfram.com/xid/0enzj0dsy-jdmej6

嵌套和多变量序列 (2)

https://wolfram.com/xid/0enzj0dsy-b08k82


https://wolfram.com/xid/0enzj0dsy-bx7d8j


https://wolfram.com/xid/0enzj0dsy-icispr


https://wolfram.com/xid/0enzj0dsy-bhhc93


https://wolfram.com/xid/0enzj0dsy-2sbsbp

形式序列 (6)
计算涉及 Inactive 和的序列的极限:

https://wolfram.com/xid/0enzj0dsy-d6f62u


https://wolfram.com/xid/0enzj0dsy-f1dl7b


https://wolfram.com/xid/0enzj0dsy-byioul


https://wolfram.com/xid/0enzj0dsy-cysasg


https://wolfram.com/xid/0enzj0dsy-gz13ht

Inactive 和的嵌套极限:

https://wolfram.com/xid/0enzj0dsy-ppyjdx

交换 DiscreteLimit 和 Sum 的顺序,分两步计算,获得同样的结果:

https://wolfram.com/xid/0enzj0dsy-w70qu


https://wolfram.com/xid/0enzj0dsy-gd8rz

涉及 Inactive 积的序列的极限:

https://wolfram.com/xid/0enzj0dsy-pc5wzj


https://wolfram.com/xid/0enzj0dsy-b9ctp5


https://wolfram.com/xid/0enzj0dsy-hac34

Inactive 积的嵌套极限:

https://wolfram.com/xid/0enzj0dsy-dvd5oo

交换 DiscreteLimit 和 Product 的顺序,分两步计算,获得同样的结果:

https://wolfram.com/xid/0enzj0dsy-bksy8


https://wolfram.com/xid/0enzj0dsy-fg6rh3

涉及 Inactive 连分数的序列的极限:

https://wolfram.com/xid/0enzj0dsy-b24jat


https://wolfram.com/xid/0enzj0dsy-fv0ch

Inactive 连分数的嵌套极限:

https://wolfram.com/xid/0enzj0dsy-er10r

通过运用 DiscreteLimit 和 ContinuedFractionK,分两步计算,获得同样的结果:

https://wolfram.com/xid/0enzj0dsy-blekj2


https://wolfram.com/xid/0enzj0dsy-ekenmi

选项 (6)各选项的常用值和功能
Assumptions (1)
GenerateConditions (3)

https://wolfram.com/xid/0enzj0dsy-6rd3fa


https://wolfram.com/xid/0enzj0dsy-lftbu6


https://wolfram.com/xid/0enzj0dsy-2lepxp


https://wolfram.com/xid/0enzj0dsy-14nrvk


https://wolfram.com/xid/0enzj0dsy-uhm6gw

当设置为 GenerateConditions->True 时,即便是非通用条件,也会汇报:

https://wolfram.com/xid/0enzj0dsy-291b1m

Method (1)

https://wolfram.com/xid/0enzj0dsy-gna87y

通过调用 Limit 获取同样的答案:

https://wolfram.com/xid/0enzj0dsy-jt0cjx


https://wolfram.com/xid/0enzj0dsy-eqc0mj

PerformanceGoal (1)
DiscreteLimit 计算周期为任意长度的序列的极限:

https://wolfram.com/xid/0enzj0dsy-i86kxj

https://wolfram.com/xid/0enzj0dsy-i9gq

用 PerformanceGoal 来避免此种花费时间较长的计算:

https://wolfram.com/xid/0enzj0dsy-byiylb

Method 选项会覆盖 PerformanceGoal:

https://wolfram.com/xid/0enzj0dsy-bh9kxc

应用 (35)用该函数可以解决的问题范例
几何极限 (3)

https://wolfram.com/xid/0enzj0dsy-twy612


https://wolfram.com/xid/0enzj0dsy-z6705c


https://wolfram.com/xid/0enzj0dsy-6uyygg


https://wolfram.com/xid/0enzj0dsy-qew1wi


https://wolfram.com/xid/0enzj0dsy-ytsz6j


https://wolfram.com/xid/0enzj0dsy-x5wzmd


https://wolfram.com/xid/0enzj0dsy-oa8uz1

取当 n->Infinity 时的 DiscreteLimit 给出球的体积:

https://wolfram.com/xid/0enzj0dsy-lvmxv2


https://wolfram.com/xid/0enzj0dsy-to8z2u


https://wolfram.com/xid/0enzj0dsy-z9ud2d

https://wolfram.com/xid/0enzj0dsy-206nof

https://wolfram.com/xid/0enzj0dsy-gbe5lc


https://wolfram.com/xid/0enzj0dsy-d8rf0v

https://wolfram.com/xid/0enzj0dsy-blqncc

用 DiscreteLimit 获取精确答案:

https://wolfram.com/xid/0enzj0dsy-m82y4

用 Integrate 直接获得同样的面积:

https://wolfram.com/xid/0enzj0dsy-nkh41k


https://wolfram.com/xid/0enzj0dsy-g7o292

https://wolfram.com/xid/0enzj0dsy-g0awiw

和与积 (6)

https://wolfram.com/xid/0enzj0dsy-e7wetu

用 Sum 获得同样的答案:

https://wolfram.com/xid/0enzj0dsy-bucem8


https://wolfram.com/xid/0enzj0dsy-2g43zd

https://wolfram.com/xid/0enzj0dsy-cusunh


https://wolfram.com/xid/0enzj0dsy-gj6a2w

用 Sum 直接计算结果:

https://wolfram.com/xid/0enzj0dsy-tmwr9b


https://wolfram.com/xid/0enzj0dsy-ouhy30


https://wolfram.com/xid/0enzj0dsy-e5njya

用 SumConvergence 和 Sum 确认级数是发散的:

https://wolfram.com/xid/0enzj0dsy-gkodeu


https://wolfram.com/xid/0enzj0dsy-ddrpmw


用 Regularization 获取级数的阿贝尔和:

https://wolfram.com/xid/0enzj0dsy-jow48n


https://wolfram.com/xid/0enzj0dsy-y29fc


https://wolfram.com/xid/0enzj0dsy-z7xm9

用 Sum 直接获取同样的答案:

https://wolfram.com/xid/0enzj0dsy-x7fhu


https://wolfram.com/xid/0enzj0dsy-foynmc

用 Product 获取同样的答案:

https://wolfram.com/xid/0enzj0dsy-enkto5


https://wolfram.com/xid/0enzj0dsy-s9t


https://wolfram.com/xid/0enzj0dsy-knb


https://wolfram.com/xid/0enzj0dsy-7uksox

级数收敛 (4)

https://wolfram.com/xid/0enzj0dsy-e3ja4c
计算该级数的 DiscreteRatio:

https://wolfram.com/xid/0enzj0dsy-or9ve


https://wolfram.com/xid/0enzj0dsy-gw0z8n

用 SumConvergence 验证结果:

https://wolfram.com/xid/0enzj0dsy-dvwrjt


https://wolfram.com/xid/0enzj0dsy-dg9vkx

https://wolfram.com/xid/0enzj0dsy-dbdj3t

用 SumConvergence 验证结果:

https://wolfram.com/xid/0enzj0dsy-j6uqov

用 Raabe 检验法来检验一般项由下式给出的级数的收敛性:

https://wolfram.com/xid/0enzj0dsy-hlfofg
Raabe 检验法在此是适用的,因为比例检验法的结果不确定:

https://wolfram.com/xid/0enzj0dsy-jda5ib


https://wolfram.com/xid/0enzj0dsy-1au62y

用 SumConvergence 验证结果:

https://wolfram.com/xid/0enzj0dsy-i6d07k


https://wolfram.com/xid/0enzj0dsy-btg6ia

https://wolfram.com/xid/0enzj0dsy-dnf8s5

用 SumConvergence 验证结果:

https://wolfram.com/xid/0enzj0dsy-f4qaev

经典定义 (3)

https://wolfram.com/xid/0enzj0dsy-ciuuy

https://wolfram.com/xid/0enzj0dsy-jx1tfs


https://wolfram.com/xid/0enzj0dsy-hj4723
用 Reduce 显示对于所有的 n>=12,定义成立:

https://wolfram.com/xid/0enzj0dsy-iej994

用 DiscretePlot 验证结果:

https://wolfram.com/xid/0enzj0dsy-b8qjep

证明下列序列发散于 Infinity,并用 M=35 检验经典定义:

https://wolfram.com/xid/0enzj0dsy-jnjv3a

https://wolfram.com/xid/0enzj0dsy-bdqyd


https://wolfram.com/xid/0enzj0dsy-hpzwn8
用 Reduce 显示对于所有的 n >= 10,定义成立:

https://wolfram.com/xid/0enzj0dsy-czhyaa

用 DiscretePlot 验证结果:

https://wolfram.com/xid/0enzj0dsy-dvwf9p


https://wolfram.com/xid/0enzj0dsy-j3gxce

https://wolfram.com/xid/0enzj0dsy-iasd6p


https://wolfram.com/xid/0enzj0dsy-ozkhdz

https://wolfram.com/xid/0enzj0dsy-fprcs5


https://wolfram.com/xid/0enzj0dsy-330hra


https://wolfram.com/xid/0enzj0dsy-xj1erx


https://wolfram.com/xid/0enzj0dsy-j5vin9


https://wolfram.com/xid/0enzj0dsy-emvke1


https://wolfram.com/xid/0enzj0dsy-d6xpgk


https://wolfram.com/xid/0enzj0dsy-4mfaij

递归序列 (3)
计算用 RSolveValue 指定的非线性递归序列的极限:

https://wolfram.com/xid/0enzj0dsy-byuq03


https://wolfram.com/xid/0enzj0dsy-hv9hqo

计算用 RSolveValue 指定的三角递归序列的极限:

https://wolfram.com/xid/0enzj0dsy-i1f8hp


https://wolfram.com/xid/0enzj0dsy-g2hnhx


https://wolfram.com/xid/0enzj0dsy-0sez2


https://wolfram.com/xid/0enzj0dsy-k9i8af

数学常数 (5)

https://wolfram.com/xid/0enzj0dsy-oeung

用 Sum 的极限计算 的值:

https://wolfram.com/xid/0enzj0dsy-eads7b


https://wolfram.com/xid/0enzj0dsy-4btt0

用序列的极限计算 EulerGamma:

https://wolfram.com/xid/0enzj0dsy-peilrk

用涉及 Fibonacci 的序列计算黄金比例:

https://wolfram.com/xid/0enzj0dsy-dvtcgb


https://wolfram.com/xid/0enzj0dsy-c5nne

数学函数 (2)

https://wolfram.com/xid/0enzj0dsy-mx9e9

用序列的极限表示 Log[x]:

https://wolfram.com/xid/0enzj0dsy-c3ferw

Stolz–Cesàro 定理 (2)
Stolz–Cesàro 定理是 L'Hôpital 规则的离散版本,在合适的条件下可用于计算序列之比的极限. 该定理指出:

https://wolfram.com/xid/0enzj0dsy-e66sks

https://wolfram.com/xid/0enzj0dsy-kd51q

https://wolfram.com/xid/0enzj0dsy-kwn30q

https://wolfram.com/xid/0enzj0dsy-fddq9l

用 DiscreteLimit 直接获取同样的结果:

https://wolfram.com/xid/0enzj0dsy-by2rl4


https://wolfram.com/xid/0enzj0dsy-b6go6h


https://wolfram.com/xid/0enzj0dsy-1b2l

https://wolfram.com/xid/0enzj0dsy-g24mng

https://wolfram.com/xid/0enzj0dsy-c7rbsy

用 DiscreteLimit 直接获取同样的结果:

https://wolfram.com/xid/0enzj0dsy-l44eop


https://wolfram.com/xid/0enzj0dsy-dvkd59

计算复杂性 (3)
一个算法运行时间函数 被认为是 "little-o of
",写作
,如果
:

https://wolfram.com/xid/0enzj0dsy-mlj236
同样, 还被认为是 "little-omega of
",写作
,如果
:

https://wolfram.com/xid/0enzj0dsy-ofku20

https://wolfram.com/xid/0enzj0dsy-c8jqd3


https://wolfram.com/xid/0enzj0dsy-dy4l4s


https://wolfram.com/xid/0enzj0dsy-bv5n1w

因此, 和
在算法运行时间空间 (runtime space) 上定义了部分关系:

https://wolfram.com/xid/0enzj0dsy-17pwac
对于较大的输入,如果与 关联的算法要比与
关联的算法快的多,则
:

https://wolfram.com/xid/0enzj0dsy-sh3ntl


https://wolfram.com/xid/0enzj0dsy-y0dogg


https://wolfram.com/xid/0enzj0dsy-3r0jej

一个算法运行时间函数 被认为是 "big-theta of
",写作
,如果下式成立:

https://wolfram.com/xid/0enzj0dsy-upxsuv

https://wolfram.com/xid/0enzj0dsy-nvt8l4

https://wolfram.com/xid/0enzj0dsy-uk9w7i


https://wolfram.com/xid/0enzj0dsy-elt437

对于算法运行时间, 必须是一个正的有限大的数字,所以每个多项式算法都可写为
:

https://wolfram.com/xid/0enzj0dsy-bbqvi9

因此,在确定大型输入的运行时间时,只有多项式中的首项很重要:

https://wolfram.com/xid/0enzj0dsy-bb05nv


https://wolfram.com/xid/0enzj0dsy-jnyodd


https://wolfram.com/xid/0enzj0dsy-cd00m5


https://wolfram.com/xid/0enzj0dsy-dvpg6x

均匀收敛 (2)

https://wolfram.com/xid/0enzj0dsy-gg43gi

https://wolfram.com/xid/0enzj0dsy-0x579


https://wolfram.com/xid/0enzj0dsy-5dqqz0


https://wolfram.com/xid/0enzj0dsy-d3t774


https://wolfram.com/xid/0enzj0dsy-k91wt


https://wolfram.com/xid/0enzj0dsy-bayvi0


https://wolfram.com/xid/0enzj0dsy-j49rv9

https://wolfram.com/xid/0enzj0dsy-tisggo


https://wolfram.com/xid/0enzj0dsy-iskd42


https://wolfram.com/xid/0enzj0dsy-1dyya


https://wolfram.com/xid/0enzj0dsy-j254qv


https://wolfram.com/xid/0enzj0dsy-oqww1

其它应用 (2)

https://wolfram.com/xid/0enzj0dsy-4xcbf

https://wolfram.com/xid/0enzj0dsy-38yi6

用 InverseLaplaceTransform 获取同样的结果:

https://wolfram.com/xid/0enzj0dsy-bam80n


https://wolfram.com/xid/0enzj0dsy-dcxr8

https://wolfram.com/xid/0enzj0dsy-byjhvn

随机变量序列的概率分布的极限(如果存在)称为渐进分布. 用二项式分布序列的渐进分布获得泊松分布,其中均值 λ、概率和试验次数的乘积保持不变:

https://wolfram.com/xid/0enzj0dsy-y0zk1


https://wolfram.com/xid/0enzj0dsy-lfwa7w

验证这是 PoissonDistribution 的 PDF:

https://wolfram.com/xid/0enzj0dsy-dyers1

绘制 λ=8 及 n 取不同值时的分布. 注意 k>n 时 PDF 为零:

https://wolfram.com/xid/0enzj0dsy-88o288

属性和关系 (15)函数的属性及与其他函数的关联

https://wolfram.com/xid/0enzj0dsy-h9ydrm

https://wolfram.com/xid/0enzj0dsy-rznz43

如果 f 和 g 的极限为有限值,则 DiscreteLimit 在和上满足分配律:

https://wolfram.com/xid/0enzj0dsy-hapf7s

https://wolfram.com/xid/0enzj0dsy-ki9asl

https://wolfram.com/xid/0enzj0dsy-hoyphw

如果 f 和 g 的极限为有限值,则 DiscreteLimit 在乘积上满足分配律:

https://wolfram.com/xid/0enzj0dsy-c04ob7

https://wolfram.com/xid/0enzj0dsy-o9zq47

https://wolfram.com/xid/0enzj0dsy-by5j87


https://wolfram.com/xid/0enzj0dsy-j63e3f

https://wolfram.com/xid/0enzj0dsy-eh42g1


https://wolfram.com/xid/0enzj0dsy-gpdhh3

https://wolfram.com/xid/0enzj0dsy-heu2u0

https://wolfram.com/xid/0enzj0dsy-f1rykc


https://wolfram.com/xid/0enzj0dsy-h8v0uu

https://wolfram.com/xid/0enzj0dsy-0bv4os


https://wolfram.com/xid/0enzj0dsy-zwywc


https://wolfram.com/xid/0enzj0dsy-wbzb2v


https://wolfram.com/xid/0enzj0dsy-zocgex


https://wolfram.com/xid/0enzj0dsy-b1meus

Stolz–Cesàro 规则可被原来求两个序列的比的极限:

https://wolfram.com/xid/0enzj0dsy-2m2ut

https://wolfram.com/xid/0enzj0dsy-cueok0

https://wolfram.com/xid/0enzj0dsy-byrenx


https://wolfram.com/xid/0enzj0dsy-d97ufy


https://wolfram.com/xid/0enzj0dsy-b3w8pq

如果 Limit 存在,则 DiscreteLimit 也存在,且它们的值相同:

https://wolfram.com/xid/0enzj0dsy-djj1nf

https://wolfram.com/xid/0enzj0dsy-tlom4


https://wolfram.com/xid/0enzj0dsy-bb2v


https://wolfram.com/xid/0enzj0dsy-58ji5s

https://wolfram.com/xid/0enzj0dsy-34gpyb


https://wolfram.com/xid/0enzj0dsy-qtl6qs


https://wolfram.com/xid/0enzj0dsy-uu7jv3

如果 DiscreteLimit 存在,则 DiscreteMaxLimit 也存在,且它们的值相同:

https://wolfram.com/xid/0enzj0dsy-ke9m6n

https://wolfram.com/xid/0enzj0dsy-fn6uxd


https://wolfram.com/xid/0enzj0dsy-il9la

如果 DiscreteLimit 存在,则 DiscreteMinLimit也存在,且它们的值相同:

https://wolfram.com/xid/0enzj0dsy-jir5ws

https://wolfram.com/xid/0enzj0dsy-jj4e7e


https://wolfram.com/xid/0enzj0dsy-elmh30


https://wolfram.com/xid/0enzj0dsy-cakso2

https://wolfram.com/xid/0enzj0dsy-fc8lse


https://wolfram.com/xid/0enzj0dsy-bnjdmp

https://wolfram.com/xid/0enzj0dsy-d0xkht


https://wolfram.com/xid/0enzj0dsy-fes1yz

https://wolfram.com/xid/0enzj0dsy-dsqfi5


https://wolfram.com/xid/0enzj0dsy-dl81lk


https://wolfram.com/xid/0enzj0dsy-ko2dnd

https://wolfram.com/xid/0enzj0dsy-hstyi1


https://wolfram.com/xid/0enzj0dsy-lb879

序列的极限通过终值定理与其 ZTransform 相关:

https://wolfram.com/xid/0enzj0dsy-cuuulh

https://wolfram.com/xid/0enzj0dsy-i28hy9

Wolfram Research (2017),DiscreteLimit,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DiscreteLimit.html.
文本
Wolfram Research (2017),DiscreteLimit,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DiscreteLimit.html.
Wolfram Research (2017),DiscreteLimit,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DiscreteLimit.html.
CMS
Wolfram 语言. 2017. "DiscreteLimit." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteLimit.html.
Wolfram 语言. 2017. "DiscreteLimit." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteLimit.html.
APA
Wolfram 语言. (2017). DiscreteLimit. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/DiscreteLimit.html 年
Wolfram 语言. (2017). DiscreteLimit. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/DiscreteLimit.html 年
BibTeX
@misc{reference.wolfram_2025_discretelimit, author="Wolfram Research", title="{DiscreteLimit}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/DiscreteLimit.html}", note=[Accessed: 02-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_discretelimit, organization={Wolfram Research}, title={DiscreteLimit}, year={2017}, url={https://reference.wolfram.com/language/ref/DiscreteLimit.html}, note=[Accessed: 02-April-2025
]}