WOLFRAM

ListVectorDisplacementPlot[{{{vx11,vy11},,{vx1n,vy1n}},,{{vxm1,vym1},,{vxmn,vymn}}}]

generates a displacement plot from an array of vector displacements {vxij,vyij}.

ListVectorDisplacementPlot[{{{x1,y1},{vx1,vy1}},,{{x1,y1},{vx1,vy1}}}]

generates a displacement plot from displacements {vxi,vyi} at point {xi,yi}.

ListVectorDisplacementPlot[{{ {{vx11,vy11},s11},,{{vx1n,vy1n},s1n}},,{ {{vxmi,vym1},sm1},,{{vxmn,vymn},smn}}}]

uses the scalar values sij to color the displaced region.

ListVectorDisplacementPlot[{ {{vx1,vy1},s1},,{{vxn,vyn},sn}}]

uses the scalar values si at point {xi,yi} to color the displaced region.

plots the displacement over the region reg.

Details and Options

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Plot a displacement field colored by its norm interpolated from a specified set of vectors:

Out[6]=6

Plot the vector field from data specifying coordinates and vectors. The reference region is the convex hull of the coordinates:

Out[2]=2

Specify a scalar field to color the deformed region:

Out[2]=2

Specify the reference region:

Out[2]=2

Scope  (15)Survey of the scope of standard use cases

Sampling  (8)

Visualize a scaled displacement field by comparing a reference and a deformed region:

Out[1]=1

Specify the coordinates and the vector field:

Out[1]=1

Specify the coordinates, the vector field and a scalar field:

Out[1]=1

Generate random points in a vector field:

By default, the reference region is the convex hull of the coordinates:

Out[2]=2

Vectors are drawn from points in the reference region to corresponding points in the (scaled) deformed region:

Out[3]=3

Restrict vectors to points on the boundary:

Out[4]=4

Specify other vectors:

Out[5]=5

Displacements can be drawn to scale:

Out[1]=1

Specify the region:

Out[1]=1

Specify the region with a RegionFunction:

Out[1]=1

The domain may be a curve:

Out[2]=2

The domain may be an ImplicitRegion:

Out[4]=4

The domain may be a ParametricRegion:

Out[6]=6

The domain may be a MeshRegion:

Out[8]=8

The domain may be a BoundaryMeshRegion:

Out[10]=10

Presentation  (7)

Specify the ColorFunction for the deformed region:

Out[3]=3

Specify the VectorColorFunction independently of the ColorFunction:

Out[1]=1

Use a single color for the arrows:

Out[1]=1

Include a legend for the norms of the displacements:

Out[1]=1

Include a legend for the optional scalar field:

Out[1]=1

Include a Mesh:

Out[1]=1

Draw displacements to scale:

Out[1]=1

Options  (45)Common values & functionality for each option

AspectRatio  (2)

By default, the aspect ratio is Automatic:

Out[1]=1

Set the aspect ratio:

Out[1]=1

BoundaryStyle  (3)

By default, the boundary style matches the interior colors in the deformed region:

Out[1]=1

Specify the BoundaryStyle:

Out[1]=1

BoundaryStyle applies to regions cut by RegionFunction:

Out[1]=1

ColorFunction  (4)

By default, the deformed region is colored by the norm of the field:

Out[3]=3

Specify a scalar field for the colors:

Out[1]=1

Use a named color gradient:

Out[1]=1

Specify a custom ColorFunction:

Out[1]=1

ColorFunctionScaling  (2)

Use the natural range of norm values:

Out[1]=1

Control the scaling of the individual arguments of the ColorFunction:

Out[1]=1

DataRange  (1)

By default, the reference region is taken to be the index range of the data array:

Out[5]=5

Specify the data range for the reference region:

Out[6]=6

Mesh  (3)

Specify a Mesh to visualize the displacements:

Out[4]=4

Show the initial and final sampling mesh:

Out[5]=5

Specify 10 mesh lines in the direction and 5 in the direction:

Out[6]=6

Use mesh lines at specific values:

Out[2]=2

Highlight specific mesh lines:

Out[3]=3

Mesh lines are suppressed in the reference region if the boundary and filling of the reference region are removed:

Out[2]=2

MeshFunctions  (1)

By default, the mesh lines are in the and directions:

Out[2]=2

Use circular and radial mesh lines:

Out[3]=3

MeshStyle  (1)

Style the mesh lines:

Out[2]=2

Style the mesh lines differently in different directions:

Out[3]=3

PlotLegends  (3)

Include a legend to show the color range of vector norms:

Out[2]=2

Include a legend for the optional scalar field:

Out[2]=2

Control the placement of the legend:

Out[2]=2

PlotPoints  (1)

Use more points to get smoother regions:

Out[3]=3

PlotRange  (3)

The full PlotRange is used by default:

Out[2]=2

Specify an explicit limit that is shared by the and directions:

Out[2]=2

Specify different plot ranges in the and directions:

Out[2]=2

PlotStyle  (4)

Remove the filling for the deformed region:

Out[3]=3

Apply a Texture to the deformed region:

Out[3]=3

Use PatternFilling to style the deformed region:

Out[3]=3

ColorFunction has precedence over PlotStyle:

Out[3]=3

PlotTheme  (1)

Use a named theme:

Out[103]=103

RegionBoundaryStyle  (2)

Specify the boundary color of the reference region:

Out[2]=2

Remove the boundary of the reference region:

Out[2]=2

RegionFillingStyle  (2)

Specify the filling of the reference region:

Out[2]=2

Remove the filling for the reference region:

Out[2]=2

RegionFunction  (1)

Use a RegionFunction to specify the reference region:

Out[2]=2

VectorAspectRatio  (2)

The default aspect ratio for a vector marker is 1/4:

Out[2]=2

Specify the relative width of a vector marker:

Out[2]=2

VectorColorFunction  (1)

By default, if VectorColorFunction is Automatic, then the VectorColorFunction matches the ColorFunction:

Out[2]=2

Specify a VectorColorFunction that is different from the ColorFunction:

Out[2]=2

Use no VectorColorFunction:

Out[3]=3

VectorColorFunctionScaling  (1)

Use the natural range of norm values for vector colors:

Out[2]=2

VectorMarkers  (1)

By default, vectors are drawn from points in the reference region to corresponding points in the deformed region:

Out[2]=2

Center the markers at the sampled points:

Out[3]=3

Use a named appearance to draw the vectors:

Out[4]=4

VectorPoints  (2)

No vectors are shown by default:

Out[2]=2

Show vectors sampled from the entire original region:

Out[3]=3

Sample vectors from the boundary of the region:

Out[6]=6

Use symbolic names to specify the density of vectors:

Out[7]=7

Use symbolic names to specify the arrangement of vectors:

Out[8]=8

Specify the number of vectors in the and directions:

Out[9]=9

Specify a different number of vectors in the and directions:

Out[10]=10

Give specific locations for vectors:

Out[12]=12

Along a curve, vectors are equally spaced by default:

Out[2]=2

VectorRange  (1)

Specify the range of vector norms:

Out[2]=2

Style the clipped vectors:

Out[3]=3

VectorScaling  (1)

By default, vectors extend from points in the reference region to corresponding points in the deformed region:

Out[2]=2

Set all vectors to have the same size:

Out[4]=4

VectorSizes  (1)

By default, vectors extend from points in the reference region to corresponding points in the deformed region:

Out[2]=2

Specify the range of arrow lengths:

Out[3]=3

Suppress scaling of the displacement vectors so that a rotation of 45° looks appropriate:

Out[4]=4

Suppress scaling of the displacement vectors even if no vectors are displayed:

Out[5]=5

VectorStyle  (1)

VectorColorFunction has precedence over VectorStyle:

Out[2]=2

Applications  (17)Sample problems that can be solved with this function

Basic Applications  (16)

A constant displacement field moves each point in the reference region by the same amount:

Out[512]=512

Note that the displacements are automatically scaled so that very small and very large displacements are both visible:

Out[2]=2

Use VectorSizesFull to display the actual sizes of displacements:

Out[2]=2

Color is used to indicate the magnitude of the displacements:

Out[2]=2

Color the region by a different scalar function:

Out[2]=2

Use arrows to indicate initial and final locations for a sample points:

Out[2]=2

Visualize a dilation in the direction:

Out[2]=2

Visualize a contraction in the direction:

Out[2]=2

Visualize a dilation in the direction and a contraction in the direction:

Out[2]=2

Visualize a shear in the direction:

Out[2]=2

Visualize a shear in the direction:

Out[2]=2

Visualize a combined shear in the and directions:

Out[2]=2

Visualize a rotation about the origin:

Out[2]=2

Combine a rotation, a shear and a dilation:

Out[2]=2

Visualize a rotation for points near the origin:

Out[2]=2

Visualize a shear for points near the origin:

Out[2]=2

Solid Mechanics  (1)

The left edge of the displayed region is fixed (no displacement) and a uniform horizontal load of 10 kPa is applied the right edge:

Out[12]=12

Obtain data from a numerical solver of the form {location vector, {displacement vector, Frobenius norm of stress tensor}} assuming that the region is linearly elastic and in plane stress:

Use a RegionFunction to properly visualize the deformed region. Note the stresses near the unloaded corners are much higher than the applied load of 10 kPa:

Out[504]=504

Properties & Relations  (12)Properties of the function, and connections to other functions

Use ListVectorDisplacementPlot3D to visualize deformations in 3D:

Out[123]=123

Use VectorDisplacementPlot to visualize functions:

Out[1]=1

Use VectorDisplacementPlot3D to visualize functions in 3D:

Out[2]=2

Use ListVectorPlot for plotting data:

Out[2]=2

Use ListStreamPlot to plot streamlines instead of vectors:

Out[3]=3

Use StreamPlot to plot with streamlines instead of vectors:

Out[1]=1

Use VectorDensityPlot to add a density plot of the scalar field:

Out[1]=1

Use ListVectorDensityPlot or ListStreamDensityPlot to add a density plot of a scalar field:

Out[2]=2

Use LineIntegralConvolutionPlot to plot the line integral convolution of a vector field:

Out[1]=1

Use ListVectorPlot3D or ListStreamPlot3D to visualize vector fields in 3D:

Out[2]=2

Use VectorPlot3D and StreamPlot3D to visualize 3D vector fields:

Out[1]=1

Plot vectors on surfaces with SliceVectorPlot3D:

Out[1]=1

Plot complex functions as a vector field:

Out[1]=1

Use ComplexStreamPlot to plot streamlines instead of vectors:

Out[2]=2

Use GeoVectorPlot to plot vectors on a map:

Out[1]=1

Use GeoStreamPlot to plot streamlines instead of vectors:

Out[2]=2
Wolfram Research (2021), ListVectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.
Wolfram Research (2021), ListVectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

Text

Wolfram Research (2021), ListVectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

Wolfram Research (2021), ListVectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

CMS

Wolfram Language. 2021. "ListVectorDisplacementPlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

Wolfram Language. 2021. "ListVectorDisplacementPlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

APA

Wolfram Language. (2021). ListVectorDisplacementPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html

Wolfram Language. (2021). ListVectorDisplacementPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html

BibTeX

@misc{reference.wolfram_2025_listvectordisplacementplot, author="Wolfram Research", title="{ListVectorDisplacementPlot}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html}", note=[Accessed: 19-June-2025 ]}

@misc{reference.wolfram_2025_listvectordisplacementplot, author="Wolfram Research", title="{ListVectorDisplacementPlot}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html}", note=[Accessed: 19-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_listvectordisplacementplot, organization={Wolfram Research}, title={ListVectorDisplacementPlot}, year={2021}, url={https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html}, note=[Accessed: 19-June-2025 ]}

@online{reference.wolfram_2025_listvectordisplacementplot, organization={Wolfram Research}, title={ListVectorDisplacementPlot}, year={2021}, url={https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html}, note=[Accessed: 19-June-2025 ]}